Paper |
Title |
Page |
TUA2I1 |
Xsuite: An Integrated Beam Physics Simulation Framework |
73 |
|
- G. Iadarola, A. Abramov, X. Buffat, R. De Maria, D. Demetriadou, L. Deniau, P.D. Hermes, P. Kicsiny, P.M. Kruyt, A. Latina, S. Łopaciuk, L. Mether, K. Paraschou, T. Pieloni, G. Sterbini, F.F. Van der Veken
CERN, Meyrin, Switzerland
- P. Belanger
UBC & TRIUMF, Vancouver, British Columbia, Canada
- D. Di Croce, M. Seidel, L. van Riesen-Haupt
EPFL, Lausanne, Switzerland
- P.J. Niedermayer
GSI, Darmstadt, Germany
|
|
|
Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors.
|
|
|
Slides TUA2I1 [4.388 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-TUA2I1
|
|
About • |
Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEA3C1 |
The Tracking Code RF-Track and Its Application |
245 |
|
- A. Latina
CERN, Meyrin, Switzerland
|
|
|
RF-Track is a CERN-developed particle tracking code that can simulate the generation, acceleration, and tracking of beams of any species through an entire accelerator, both in realistic field maps and conventional elements. RF-Track includes a large set of single-particle and collective effects: space-charge, beam-beam, beam loading in standing and travelling wave structures, short- and long-range wakefield effects, synchrotron radiation emission, multiple Coulomb scattering in materials, and particle lifetime. These effects make it the ideal tool for the simulation of high-intensity machines. RF-Track has been used for the simulation of electron linacs for medical applications, inverse-Compton-scattering sources, positron sources, protons in Linac4, and the cooling channel of a future muon collider. An overview of the code is presented, along with some significant results.
|
|
|
Slides WEA3C1 [2.696 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-WEA3C1
|
|
About • |
Received ※ 26 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 12 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEA3C2 |
Benchmarking of PATH and RF-Track in the Simulation of Linac4 |
249 |
|
- G. Bellodi, J.-B. Lallement, A. Latina, A.M. Lombardi
CERN, Meyrin, Switzerland
|
|
|
A benchmarking campaign has been initiated to compare PATH and RF-Track in modelling high-intensity, low-energy hadron beams. The development of extra functionalities in RF-Track was required to handle an unbunched beam from the source and to ease the user interface. The Linac4 RFQ and downstream accelerating structures were adopted as test case scenarios. This paper will give an overview of the results obtained so far and plans for future code development.
|
|
|
Slides WEA3C2 [4.809 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-WEA3C2
|
|
About • |
Received ※ 27 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 18 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|