WEC4I —  Invited Presentations WG C   (11-Oct-23   16:55—19:00)
Paper Title Page
WEC4I1 RF Systems of J-PARC Proton Synchrotrons for High-Intensity Longitudinal Beam Optimization and Handling 305
 
  • F. Tamura, R. Miyakoshi, M. Nomura, H. Okita, T. Shimada, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Hara, K. Hasegawa, C. Ohmori, K. Seiya, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  The application of magnetic alloy (MA) cores to the accelerating rf cavities in high intensity proton synchrotrons was pioneered for the J-PARC synchrotrons, the RCS and MR. The MA loaded cavities can generate high accelerating voltages. The wideband frequency response of the MA cavity enables the frequency sweep to follow the velocity change of protons without the tuning loop. The dual harmonic operation, where a single cavity is driven by the superposition of the fundamental and second harmonic rf voltages, is indispensable for the longitudinal bunch shaping to alleviate the space charge effects in the RCS. These advantages of the MA cavity are also disadvantages when looking at them from a different perspective. Since the wake voltage consists of several harmonics, which can cause bucket distortion or coupled-bunch instabilities, the beam loading compensation must be multiharmonic. The operation of tubes in the final stage amplifier is not trivial when accelerating very high intensity beams; the output current is high and the anode voltageis also multiharmonic. We summarize our effort against these issues in the operation of the RCS and MR for more than 10 years.  
slides icon Slides WEC4I1 [6.932 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4I1  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4I2 Development of Dual-harmonic RF System for CSNS-II 312
 
  • X. Li, X. Li, W. Long, W.J. Wu, C.L. Zhang
    IHEP, Beijing, People’s Republic of China
  • Y. Liu
    DNSC, Dongguan, People’s Republic of China
  • B. Wupresenter
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The upgrade of the China Spallation Neutron Source (CSNS-II) encompasses the development of a dual har-monic RF system for the Rapid Cycling Synchrotron (RCS). The objective of this system is to achieve a maxi-mum second harmonic voltage of 100 kV. To meet this requirement, a high gradient cavity is being used in place of the traditional ferrite loaded cavity. Magnetic alloy (MA) loaded cavities, which can attain very high field gradients, have demonstrated their suitability for high-intensity proton synchrotrons. As a result, designing an RF system with MA-loaded cavities has emerged as a primary focus. Over the past decade, substantial ad-vancements have been made in the development of MA-loaded cavities at CSNS. This paper provides an overview of the RF system that incorporates the MA-loaded cavity and presents the high-power test results of the system.  
slides icon Slides WEC4I2 [6.449 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4I2  
About • Received ※ 28 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)