WEC4C —  Contributed Presentations WG C   (11-Oct-23   16:55—19:00)
Paper Title Page
WEC4C1 Magnetic Alloy Loaded Cavities in J-PARC and CERN 316
 
  • C. Ohmori
    KEK, Ibaraki, Japan
  • M.M. Paoluzzi
    CERN, Meyrin, Switzerland
 
  Funding: This work was supported by JSPS KAKENHI Grant Number 19KK0078 and 18K11930.
Magnetic Alloy loaded cavities have been used in seven synchrotrons in J-PARC and CERN. In this paper, we will review variety of the cavity technologies to satisfy the requirements for the beam acceleration, deceleration, manipulation and instability damping. This paper also contains improvements of cavity cores by magnetic annealing scheme, quality control of cores during production, the cooling methods of magnetic alloy cores: direct water cooling and indirect one using copper discs, control of cavity bandwidths from broad to narrow bands, and the ways to drive RF cavities by tube and rad-hard solid-state amplifiers.
 
slides icon Slides WEC4C1 [3.371 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C1  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4C2 Multiharmonic Buncher for the Isolde Superconducting Recoil Separator Project 321
 
  • J.L. Muñoz, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, S. Varnasseri
    ESS Bilbao, Zamudio, Spain
  • I. Martel
    University of Huelva, Huelva, Spain
 
  Funding: This work has been supported by the European Union ¿NextGenerationEU program
The ISOLDE Superconducting Recoil Separator (ISRS) is a proposal of building a very compact separator ring as an instrument in the HIE-ISOLDE facility. The injection of the HIE-ISOLDE beam into this ring requires a more compact bunch structure, so a Multi-Harmonic Buncher device is proposed for this task. The MHB will operate at a frequency of 10.128 MHz, which is a 10% of the linac frequency, and would be installed before the RFQ. The MHB is desgined as a two electrodes system, and the MHB signal, composed for the first four harmonics of the fundamental frequency, is fed into the electrodes that are connected to the central conductor of a coaxial waveguides. The full design of the MHB is presented, including electromagnetic optimization of the electrode shape, optimization of the weights of each of the harmonic contribution, mechanical and thermal design of the structure. The RF generation and electronics to power up the device are also presented. A solution that generates directly the composed signal andis then amplified by a solid state power amplifier is also presented in this contribution.
 
slides icon Slides WEC4C2 [4.165 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C2  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)