Author: Triantafyllou, N.
Paper Title Page
WEC3C3 Simulations and Measurements of Betatron and Off-momentum Cleaning Performance in the Energy Ramp at the LHC 279
 
  • N. Triantafyllou, R. Bruce, M. D’Andrea, K.A. Dewhurst, B. Lindström, D. Mirarchi, S. Redaelli, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  The Large Hadron Collider (LHC) is equipped with a multistage collimation system that protects the machine against unavoidable beam losses at large betatron and energy offsets at all stages of operation. Dedicated validations and an understanding in simulations of the collimation performance are crucial for the energy ramp from 450 GeV to 6.8 TeV because complex changes of optics and orbit take place in this phase. Indeed, the betatron functions are reduced in all experiments for an efficient setup of the collisions at top energy. In this paper, simulations of the betatron and off-momentum cleaning during the energy ramp are presented. A particular focus is given to the off-momentum losses at the start of the ramp. The simulation results are benchmarked against experimental data, demonstrating the accuracy of the newly developed tools used for the simulations.  
slides icon Slides WEC3C3 [1.641 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C3  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP13 Recent Developments with the New Tools for Collimation Simulations in Xsuite 474
 
  • F.F. Van der Veken, A. Abramov, G. Broggi, F. Cerutti, M. D’Andrea, D. Demetriadou, L.S. Esposito, G. Hugo, G. Iadarola, B. Lindström, S. Redaelli, V. Rodin, N. Triantafyllou
    CERN, Meyrin, Switzerland
 
  Simulations of single-particle tracking involving collimation systems need dedicated tools to perform the different tasks needed. These include the accurate description of particle-matter interactions when a tracked particle impacts a collimator jaw; a detailed aperture model to identify the longitudinal location of losses; and others. One such tool is the K2 code in SixTrack, which describes the scattering of high-energy protons in matter. This code has recently been ported into the Xsuite tracking code that is being developed at CERN. Another approach is to couple the tracking with existing tools, such as FLUKA or Geant4, that offer better descriptions of particle-matter interactions and can treat lepton and ion beams. This includes the generation of secondary particles and fragmentation when tracking ions. In addition to the development of coupling with Geant4, the SixTrack-FLUKA coupling has recently been translated and integrated into the Xsuite environment as well. In this paper, we present the ongoing development of these tools. A thorough testing of the new implementation was performed, using as case studies various collimation layout configurations for the LHC Run 3.  
poster icon Poster THBP13 [2.785 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP13  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)