Author: Morozov, V.S.
Paper Title Page
WEC3I1 Self-Consistent Injection Painting for Space Charge Mitigation 258
 
  • N.J. Evans, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • T.V. Gorlov, A.M. Hoover
    ORNL, Oak Ridge, TN, USA
 
  Funding: This work was conducted at UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy, with partial funding provided by Field Work Proposal ORNL-ERKCS41.
I will present results of experiments at the Spallation Neutron Source to implement a method of phase space painting we refer to as ¿eigenpainting¿, in which beam is injected along one eigenvector of the transfer matrix of a ring with full coupling.  The method and resultant distribution were initially proposed by Danilov almost to linearize the space charge force, minimizing space charge tune spread. In the theoretically ideal case this so-called Danilov distribution has uniform charge distribution, elliptical envelope in real-space, and a vanishing 4D transverse emittance. Such a beam can be maintained throughout injection. The Danilov distribution has implications for increasing beam intensity beyond the conventional space charge limit through a reduction of both tune spread and shift, and increasing collider performance. This talk will present current limits on beam quality, and details of the preparation of the optics in the SNS accumulator ring, including the installation of new solenoid magnets. The status of experiments to improve beam quality and characterize the interesting dynamical implications of the defining features of the Danilov distribution will also be discussed.
 
slides icon Slides WEC3I1 [2.687 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3I1  
About • Received ※ 28 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)