Author: Montag, C.
Paper Title Page
MOA3I1 Beam Dynamics Challenges in the Design of the Electron-Ion Collider 23
 
  • Y. Luo, M. Blaskiewicz, D. Marx, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • A. Blednykh, C. Montag, V. Ptitsyn, V.H. Ranjbar, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • S. Nagaitsev
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC), presently under construction at Brookhaven National Laboratory, will collide polarized high-energy electron beams with hadron beams, achieving luminosities up to 1 × 1034 cm¿2 s¿1 in the center-of-mass energy range of 20-140 GeV. To achieve such high luminosity, we adopt high bunch intensities for both beams, small and flat transverse beam sizes at the interaction point (IP), a large crossing angle of 25 mrad, and a novel strong hadron cooling in the Hadron Storage Ring (HSR) to counteract intra-beam scattering (IBS) at the collision energy. In this talk, we will review the beam dynamics challenges in the design of the EIC, particularly the single-particle dynamic aperture, polarization maintenance, beam-beam interaction, impedance budget and instabilities. We will also briefly mention some technical challenges associated with beam dynamics, such as strong hadron cooling, multipoles and noises of crab cavities, power supply current ripples, and the vacuum upgrade to existing beam pipes of the Hadron Storage Ring of the EIC.
 
slides icon Slides MOA3I1 [3.437 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I1  
About • Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)