Author: Mirarchi, D.
Paper Title Page
TUC4C2 Mitigating Collimation Impedance and Improving Halo Cleaning with New Optics and Settings Strategy of the HL-LHC Betatron Collimation System 183
 
  • B. Lindström, R. Bruce, X. Buffat, R. De Maria, L. Giacomel, P.D. Hermes, D. Mirarchi, N. Mounet, T.H.B. Persson, S. Redaelli, R. Tomás García, F.F. Van der Veken, A. Wegscheider
    CERN, Meyrin, Switzerland
 
  Funding: Work supported by the HL-LHC project
With High Luminosity Large Hadron Collider (HL-LHC) beam intensities, there are concerns that the beam losses in the dispersion suppressors around the betatron cleaning insertion might exceed the quench limits. Furthermore, to maximize the beam lifetime it is important to reduce the impedance as much as possible. The collimators constitute one of the main sources of impedance in HL-LHC, given the need to operate with small collimator gaps. To improve this, a new optics was developed which increases the beta function in the collimation area, as well as the single pass dispersion from the primary collimators to the downstream shower absorbers. Other possible improvements from orbit bumps, to further enhance the locally generated dispersion, and from asymmetric collimator settings were also studied. The new solutions were partially tested with 6.8 TeV beams at the LHC in a dedicated machine experiment in 2022. In this paper, the new performance is reviewed and prospects for future operational deployment are discussed.
 
slides icon Slides TUC4C2 [2.222 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4C2  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C3 Simulations and Measurements of Betatron and Off-momentum Cleaning Performance in the Energy Ramp at the LHC 279
 
  • N. Triantafyllou, R. Bruce, M. D’Andrea, K.A. Dewhurst, B. Lindström, D. Mirarchi, S. Redaelli, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  The Large Hadron Collider (LHC) is equipped with a multistage collimation system that protects the machine against unavoidable beam losses at large betatron and energy offsets at all stages of operation. Dedicated validations and an understanding in simulations of the collimation performance are crucial for the energy ramp from 450 GeV to 6.8 TeV because complex changes of optics and orbit take place in this phase. Indeed, the betatron functions are reduced in all experiments for an efficient setup of the collisions at top energy. In this paper, simulations of the betatron and off-momentum cleaning during the energy ramp are presented. A particular focus is given to the off-momentum losses at the start of the ramp. The simulation results are benchmarked against experimental data, demonstrating the accuracy of the newly developed tools used for the simulations.  
slides icon Slides WEC3C3 [1.641 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C3  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP49 Collimation of 400 MJ Beams at the LHC: The First Step Towards the HL-LHC Era 603
 
  • S. Redaelli, A. Abramov, D.B. Baillard, R. Bruce, R. Cai, F. Carra, M. D’Andrea, M. Di Castro, L. Giacomel, P.D. Hermes, B. Lindström, D. Mirarchi, N. Mounet, F.-X. Nuiry, A. Perillo Marcone, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • R. Cai
    EPFL, Lausanne, Switzerland
  • A. Vella
    University of Malta, Information and Communication Technology, Msida, Malta
 
  Funding: Work supported by the HL-LHC project.
An important upgrade programme is planned for the collimation system of the CERN Large Hadron Collider (LHC) in order to meet the challenges of the upcoming High-Luminosity LHC (HL-LHC) project. A first stage of the HL-LHC upgrade was already deployed during the last LHC Long Shutdown, offering important improvements of the collimation cleaning, a significant reduction of the impedance contribution and better cleaning of collisional debris, in particular for ion-ion collisions. This upgrade provides a critical opportunity to explore the LHC intensity limits during the LHC Run 3 and can provide crucial feedback to refine upgrade plans and operational scenarios in the HL-LHC era. This paper describes the performance of the upgraded LHC collimation system that has already enabled stored-beam energies larger than 400 MJ at the unprecedented beam energy of 6.8 TeV, and reviews further upgrade plans envisaged to reach 700 MJ beams at the HL-LHC.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP49  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)