Paper | Title | Page |
---|---|---|
THA2C1 | Measurement of Transverse Beam Emittance for a High-Intensity Proton Injector | 363 |
|
||
Funding: This work was supported through "KOMAC operation fund" of KAERI by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (KAERI-524320-23) We propose a simple and fast diagnostics method for the transverse beam emittance using a solenoid magnet. The solenoid scan data is analyzed employing the hard edge solenoid model and thick lens approximation. The analytical method is validated by beam dynamics simulations with varying input beam parameters. To address the space charge effect in a simplified manner, the space charge force is linearized and incorporated between segments of the drift-solenoid transfer matrix. For intense hadron injectors with higher beam current accounting for space charge prove to be more effective for correction. Building upon the method validated through beam simulation, experiments are conducted on space charge compensation at the beam test stand in the Korea Multipurpose Accelerator Complex (KOMAC). In a constant ion source operating condition, beam emittance is measured from solenoid scans while varying the flow rate of krypton gas injection. Notable shifts are observed in transverse beam emittance attributable to krypton gas injection, implying some optimal gas flow rate for mitigating emittance growth. |
||
Slides THA2C1 [3.438 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THA2C1 | |
About • | Received ※ 23 October 2023 — Revised ※ 28 October 2023 — Accepted ※ 30 October 2023 — Issued ※ 20 November 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THAFP07 | Preliminary Results on Transverse Phase Space Tomography at KOMAC | 415 |
|
||
Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science and ICT, the Korean government (KAERI ID no. : 524320-23) Beam loss is a critical issue to be avoid in high power proton accelerators due to machine protection from radiation. Nonlinear processes add higher order moments and cause halo and tail structures to a beam, resulting in beam losses. Hence it becomes more important to characterize beams for high power accelerators. Conventional beam diagnostic methods can measure only approximate elliptical features of a beam and are not suitable for high power beams. Tomography method reconstructs a multidimensional distribution from its lower-dimensional projections. We used this method to reconstruct the 4D transverse (x, x’, y, y’) phase space distribution of the beam from the accelerator at KOMAC (Korea Multipurpose Accelerator Complex). RFQ BTS (Radio Frequency Quadrupole Beam Test System) was constructed and commissioned in 2022. In the BTS, we performed tomography experiements and obtained preliminary results on 4D transverse phase space beam distribution. We also have applied the tomography measurement techniques to the 100 MeV proton linac. In this paper, we describe the tomography measurement system and present the preliminary results obtained from the BTS and the 100 MeV proton linac. |
||
Slides THAFP07 [2.018 MB] | ||
Poster THAFP07 [1.035 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP07 | |
About • | Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 13 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |