Paper | Title | Page |
---|---|---|
THBP02 | FFA Magnet for Pulsed High Power Proton Driver | 436 |
|
||
Fixed Field Alternating gradient (FFA) accelerator is considered as a proton driver for the next generation spallation neutron source (ISIS-II). To demonstrate its suitability for high intensity operation, an FFA proton prototype ring is planned at RAL, called FETS-FFA. The main magnets are a critical part of the machine, and several characteristics of these magnets require attention, such as doublet spiral structure, essential operational flexibility in terms of machine optics and control of the fringe field extent from the nonlinear optics point of view. This paper will discuss the design of the prototype magnet for FETS-FFA ring. | ||
![]() |
Poster THBP02 [5.871 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP02 | |
About • | Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THBP27 | Experimental Investigation of Nonlinear Integrable Optics in a Paul Trap | 523 |
|
||
Funding: Work supported by Royal Society grants Octupoles are often used to damp beam instabilities caused by space charge. However, in general the insertion of octupole magnets leads to a nonintegrable lattice which reduces the area of stable particle motion. One proposed solution to this problem is Quasi-Integrable Optics (QIO), where the octupoles are inserted between a specially designed lattice called a T-insert. An octupole with a strength that scales as 1/β3(s) is applied in the drift region to create a time-independent octupole field, leading to a lattice with an invariant Hamiltonian. This means that large tune spreads can be achieved without reducing the dynamic aperture. IBEX is a Paul trap which confines low energy ions with an RF voltage, simulating the transverse dynamics of an alternating gradient accelerator. IBEX has recently undergone an upgrade to allow for octupole fields to be created in the trap in addition to quadrupole focusing. We present our first experimental results from testing QIO with the IBEX trap. jake.flowerdew@physics.ox.ac.uk |
||
![]() |
Poster THBP27 [4.163 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP27 | |
About • | Received ※ 30 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |