Author: Flowerdew, J.A.D.
Paper Title Page
THBP27 Experimental Investigation of Nonlinear Integrable Optics in a Paul Trap 523
 
  • J.A.D. Flowerdew
    University of Oxford, Oxford, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: Work supported by Royal Society grants
Octupoles are often used to damp beam instabilities caused by space charge. However, in general the insertion of octupole magnets leads to a nonintegrable lattice which reduces the area of stable particle motion. One proposed solution to this problem is Quasi-Integrable Optics (QIO), where the octupoles are inserted between a specially designed lattice called a T-insert. An octupole with a strength that scales as 1/β3(s) is applied in the drift region to create a time-independent octupole field, leading to a lattice with an invariant Hamiltonian. This means that large tune spreads can be achieved without reducing the dynamic aperture. IBEX is a Paul trap which confines low energy ions with an RF voltage, simulating the transverse dynamics of an alternating gradient accelerator. IBEX has recently undergone an upgrade to allow for octupole fields to be created in the trap in addition to quadrupole focusing. We present our first experimental results from testing QIO with the IBEX trap.
jake.flowerdew@physics.ox.ac.uk
 
poster icon Poster THBP27 [4.163 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP27  
About • Received ※ 30 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)