Author: Deniau, L.
Paper Title Page
TUA2I1 Xsuite: An Integrated Beam Physics Simulation Framework 73
 
  • G. Iadarola, A. Abramov, X. Buffat, R. De Maria, D. Demetriadou, L. Deniau, P.D. Hermes, P. Kicsiny, P.M. Kruyt, A. Latina, S. Łopaciuk, L. Mether, K. Paraschou, T. Pieloni, G. Sterbini, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • P. Belanger
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • D. Di Croce, M. Seidel, L. van Riesen-Haupt
    EPFL, Lausanne, Switzerland
  • P.J. Niedermayer
    GSI, Darmstadt, Germany
 
  Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors.  
slides icon Slides TUA2I1 [4.388 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2I1  
About • Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP15 Optimizing Resonance Driving Terms Using MAD-NG Parametric Maps 483
 
  • L. Deniau, S. Kostoglou, E.H. Maclean, K. Paraschou, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  In 2023, a review of the LHC octupolar resonance driving terms at injection was carried out, motivated by two observations: (i) unwanted losses during the injection process with strongly powered octupoles and (ii) an expected reduction in emittance growth from e-cloud effects in simulations with weaker octupolar resonances. The MAD-NG code was used to simultaneously optimise the main octupolar resonances: 4Qx, 4Qy, and 2Qx-2Qy by adjusting 16 quadrupole families and 16 octupole families, for a total of 32 parameters. These knobs were introduced as parameters in the transfer map, allowing the Jacobian required by the optimiser to be calculated in a single pass, saving 32 additional optics evaluations and avoiding finite difference approximations. Constraints on tunes, amplitude detuning and optics around the machine were also considered as part of the optimisation process. This paper reviews the parametric optimisation with MAD-NG and compares the results with MADX-PTC.  
poster icon Poster THBP15 [0.938 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP15  
About • Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP16 Emittance Growth From Electron Clouds Forming in the LHC Arc Quadrupoles 487
 
  • K. Paraschou, H. Bartosik, L. Deniau, G. Iadarola, E.H. Maclean, L. Mether, Y. Papaphilippou, G. Rumolo, R. Tomás García
    CERN, Meyrin, Switzerland
  • T. Pieloni, J.M.B. Potdevin
    EPFL, Lausanne, Switzerland
 
  Operation of the Large Hadron Collider with proton bunches spaced 25 ns apart favours the formation of electron clouds. In fact, a slow emittance growth is observed in proton bunches at injection energy (450 GeV), showing a bunch-by-bunch signature that is compatible with electron cloud effects. The study of these effects is particularly relevant in view of the planned HL-LHC upgrade, which relies on significantly increased beam intensity and brightness. Particle tracking simulations that take into account both electron cloud effects and the non-linear magnetic fields of the lattice suggest that the electron clouds forming in the arc quadrupoles are responsible for the observed degradation. In this work, the simulation results are studied to gain insight into the mechanism which drives the slow emittance growth. Finally, it is discussed how optimising the optics of the lattice can allow the mitigation of such effects.  
poster icon Poster THBP16 [3.432 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP16  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP20 Optics for Landau Damping with Minimized Octupolar Resonances in the LHC 503
 
  • R. Tomás García, F.S. Carlier, L. Deniau, J. Dilly, J. Keintzel, S. Kostoglou, M. Le Garrec, E.H. Maclean, K. Paraschou, T.H.B. Persson, F. Soubelet, A. Wegscheider
    CERN, Meyrin, Switzerland
 
  Operation of the Large Hadron Collider (LHC) requires strong octupolar magnetic fields to suppress coherent beam instabilities. The amplitude detuning that is generated by these octupolar magnetic fields brings the tune of individual particles close to harmful resonances, which are mostly driven by the octupolar fields themselves. In 2023, new optics were deployed in the LHC at injection with optimized betatronic phase advances to minimize the resonances from the octupolar fields without affecting the amplitude detuning. This paper reports on the optics design, commissioning and the lifetime measurements performed to validate the optics.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP20  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)