Accelerator Systems
Paper Title Page
MOA2I2
Challenges & Status of HIAF Project and Brief Introduction of Ciads Project in China  
 
  • J.C. Yang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  HIAF (High In­ten­sity heavy ion Ac­cel­er­a­tor Fa­cil­ity) is a pro­posed new ac­cel­er­a­tor fa­cil­ity for ad­vances in the nu­clear physics and re­lated re­search fields in China. The con­struc­tion of the ac­cel­er­a­tor com­plex began in 2018 and is sched­uled to be com­plete by the end of 2025. In the past sev­eral years, the pro­to­types have been de­vel­oped suc­cess­fully for these in­no­v­a­tive tech­nolo­gies. In this pre­sen­ta­tion, progress and sta­tus of civil en­gi­neer­ing and in­fra­struc­ture con­struc­tion of HIAF are pre­sented, R&D on crit­i­cal ac­cel­er­a­tor tech­niques and pro­to­types of core de­vices are in­tro­duced. Ac­cel­er­a­tor Dri­ven Sub-crit­i­cal Sys­tem (ADS) is con­sid­ered to be the op­ti­mum method of con­vert­ing spent fuel into short-lived iso­topes. Cur­rently, ADS is still in the tran­si­tional phase from key tech­nolo­gies tack­ling to sys­tem­atic and in­te­grated re­search. As one of the na­tional major sci­ence and tech­nol­ogy in­fra­struc­tures, the China ini­tia­tive Ac­cel­er­a­tor Dri­ven Sys­tem (CiADS) will be the world¿s first pro­to­type of ADS fa­cil­ity at megawatt level to ex­plore the safe and proper tech­nol­ogy of nu­clear waste dis­posal. The brief in­tro­duc­tion of CiADS will be given in this pre­sen­ta­tion.  
slides icon Slides MOA2I2 [16.051 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA4I1 Design of a Fixed-Field Accelerating Ring for High Power Applications 38
 
  • S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  A fixed field ac­cel­er­at­ing ring (FFA) has some ad­van­tage to achieve high beam power over con­ven­tional ring ac­cel­er­a­tors. It would be also a sus­tain­able op­tion as fu­ture pro­ton dri­vers. We will dis­cuss the de­sign of an FFA tak­ing a fu­ture up­grade plan of ISIS (ISIS-II) as an ex­am­ple.  
slides icon Slides MOA4I1 [14.313 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA4I1  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 15 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I1 Ultra-low Emittance Bunches from Laser Cooled Ion Traps for Intense Focal Points 128
 
  • S.J. Brooks
    BNL, Upton, New York, USA
 
  Laser-cooled ion traps are used to pre­pare groups of ions in very low tem­per­a­ture states, ex­hibit­ing such phe­nom­ena as Coulomb crys­tal­liza­tion. This cor­re­sponds to very small nor­mal­ized RMS emit­tances of 10-13–10-12 m, com­pared to typ­i­cal ac­cel­er­a­tor ion sources in the 10-7–10-6 m range. Such bunches could po­ten­tially be fo­cused a mil­lion times smaller, com­pen­sat­ing for the lower num­ber of ions per bunch. Such an ul­tra-low emit­tance source could en­able high-spe­cific-lu­mi­nos­ity col­lid­ers where re­duced beam cur­rent and aper­tures are needed to pro­duce a given lu­mi­nos­ity. Fur­ther ad­vances needed to en­able such col­lid­ers in­clude lin­ear, he­li­cal or ring cool­ing chan­nel de­signs for in­creased bunch num­ber or cur­rent through­put. Novel high den­sity focal points using only a sin­gle bunch also ap­pear pos­si­ble, where the high den­sity par­ti­cles col­lide with them­selves. At col­lider en­er­gies ~100 GeV, these ap­proach the nu­clear den­sity and offer a way of study­ing larger quan­ti­ties of neu­tron star mat­ter and other cus­tom nu­clear mat­ter in the lab.  
slides icon Slides TUC3I1 [167.328 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I1  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I2 Shaping High Brightness and Fixed Target Beams with the CERN PSB Charge Exchange Injection 135
 
  • C. Bracco, S.C.P. Albright, F. Asvesta, G.P. Di Giovanni, F. Roncarolo
    CERN, Meyrin, Switzerland
 
  CERN adopted the charge ex­change in­jec­tion tech­nique for the first time in the PS Booster after Long Shut­down 2. This al­lowed to over­come space charge lim­i­ta­tions, tai­lor high bright­ness beams for the LHC and de­liver high in­ten­sity flux of pro­tons to the fixed tar­get ex­per­i­ments. De­tails on the con­cept, physics, hard­ware and di­ag­nos­tic tools are pre­sented while re­trac­ing the ex­cit­ing steps of the suc­cess­ful com­mis­sion­ing pe­riod and the first years of op­er­a­tion with this sys­tem. A look to the fu­ture is taken by ex­plain­ing the next stages to achieve the am­bi­tious Lu­mi­nos­ity tar­gets fore­seen for the HL-LHC era.  
slides icon Slides TUC3I2 [19.053 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I2  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I3 Laser Stripping of H⁻ Beam 141
 
  • T.V. Gorlov, A.V. Aleksandrov, S.M. Cousineau, Y. Liu, A.R. Oguz
    ORNL, Oak Ridge, Tennessee, USA
  • N.J. Evans
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P.K. Saha
    JAEA/J-PARC, Tokai-mura, Japan
 
  Basic prin­ci­ples of laser as­sisted charge ex­change in­jec­tion for H⁻ ion andH0 beams are pre­sented. The­o­ret­i­cal as­pects of elec­tro­mag­netic in­ter­ac­tion of laser with hy­dro­gen atom and H⁻ ions are dis­cussed. Laser ex­ci­ta­tion, pho­toion­iza­tio and in­ter­ac­tion of atoms and ions with a strong elec­tro-mag­netic field are dis­cussed and com­pared. Dif­fer­ent tech­niques of LACE for strip­ping of high cur­rent sto­chas­tic beams are pre­sented. The op­ti­mum pa­ra­me­ters of LACE are es­ti­mated and com­pared for var­i­ous ion beam en­er­gies. Ex­per­i­men­tal de­vel­op­ment of laser strip­ping at the SNS are re­viewed. Fu­ture plans of LACE at the SNS and J-PARC are dis­cussed.  
slides icon Slides TUC3I3 [1.790 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I3  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 01 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3C1
Muon Production Target at J-PARC  
 
  • M.S. Matoba
    KEK, Tokai, Ibaraki, Japan
 
  The Muon Sci­ence Fa­cil­ity (MUSE) at the Japan Pro­ton Ac­cel­er­a­tor Re­search Com­plex (J-PARC MLF) gen­er­ates in­tense pulsed muon beams (3 GeV, 25 Hz, up to 0.33 mA), which are used to study var­i­ous el­e­men­tary par­ti­cle and ma­te­r­ial life. A muon pro­duc­tion tar­get is in­stalled on the pro­ton beam­line be­tween the 3 GeV syn­chro­tron and the neu­tron tar­get. The tar­get is made of high-pu­rity isotropic graphite IG-430U (Toyo Tanso), which is ex­posed to a strong ra­di­a­tion en­vi­ron­ment and heats up to high tem­per­a­tures dur­ing beam ir­ra­di­a­tion. In 2014, the fixed tar­get was re­placed by a ro­tat­ing tar­get, which is now op­er­at­ing smoothly at 800 kW. The ring-shaped graphite, 250 mm in inner di­am­e­ter, 350 mm in outer di­am­e­ter, and 20 mm thick, is di­vided into three sec­tions to pre­vent fail­ure due to ther­mal stress caused by ther­mal im­bal­ance. By in­tro­duc­ing a solid lu­bri­cant made from tung­sten disul­fide, we have achieved a long life of the ro­tat­ing sup­port under high heat, high ra­di­a­tion, and vac­uum, which is ex­pected to be about ten years. In the pre­sen­ta­tion, the cur­rent sta­tus of the tar­get de­vel­op­ment and mon­i­tor­ing sys­tem will be re­ported.  
slides icon Slides TUC3C1 [2.721 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3C2
Challenging of Muon Acceleration for Muon Colliders  
 
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  The US HEP com­mu­nity pre­sents a high in­ter­est on multi-TeV muon col­lid­ers in the last P5 meet­ings which will per­form as a Higgs fac­tory to char­ac­ter­ize a Higgs boson in high pre­ci­sion. Be­sides, it will be a dis­cov­ery ma­chine to re­veal var­i­ous mys­ter­ies in high en­ergy par­ti­cle physics and cos­mol­ogy. Be­cause muons are ter­tiary par­ti­cles and are de­cayed with a fi­nite life­time, a novel muon ac­cel­er­a­tion tech­nol­ogy is re­quired. In this pre­sen­ta­tion, I will show the iden­ti­fied chal­lenge in the muon ac­cel­er­a­tion and demon­strate the new tech­nol­ogy what we have re­searched and de­vel­oped, and dis­cuss a strate­gic plan and mile­stone for the fu­ture R&D.  
slides icon Slides TUC3C2 [1.925 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4I1 A Kicker Impedance Reduction Scheme with Diode Stack and Resistor at the RCS in J-PARC 162
 
  • Y. Shobuda, H. Harada, P.K. Saha, T. Takayanagi, F. Tamura, T. Togashi, Y. Watanabe, K. Yamamoto, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  At the 3-GeV Rapid Cy­cling Syn­chro­tron (RCS) within the Japan Pro­ton Ac­cel­er­a­tor Re­search Com­plex (J-PARC), kicker im­ped­ance causes beam in­sta­bil­ity. A 1-MW beam with a large emit­tance can be de­liv­ered to the Ma­te­r­ial and Life Sci­ence Ex­per­i­men­tal Fa­cil­ity (MLF) by sup­press­ing beam in­sta­bil­i­ties with­out the need for a trans­verse feed­back sys­tem¿sim­ply by turn­ing off the sex­tu­ple mag­nets. How­ever, we re­quire other high-in­ten­sity and high-qual­ity beams with smaller emit­tances for the Main Ring (MR). To ad­dress this, we pro­posed a scheme for sup­press­ing the kicker im­ped­ance using a diode stack and re­sis­tors, which ef­fec­tively re­duces beam in­sta­bil­ity. Im­por­tantly, these de­vices have a neg­li­gi­ble ef­fect on the ex­tracted beam from the RCS.  
slides icon Slides TUC4I1 [2.713 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4I1  
About • Received ※ 26 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4I2 Development of an Impedance Model for the ISIS Synchrotron and Predictions for the Head-Tail Instability 170
 
  • D.W. Posthuma de Boer, B.A. Orton, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is a pulsed, spal­la­tion neu­tron and muon source at the Ruther­ford Ap­ple­ton Lab­o­ra­tory in the UK. The rapid cy­cling syn­chro­tron which dri­ves the fa­cil­ity ac­cel­er­ates 3·1013 pro­tons-per-pulse from 70 to 800 MeV at 50 Hz, and de­liv­ers a mean beam power of 0.2 MW to two tar­get sta­tions. Beam-loss mech­a­nisms must be un­der­stood to op­ti­mise per­for­mance and min­imise equip­ment ac­ti­va­tion; and to de­velop mit­i­ga­tion meth­ods for fu­ture op­er­a­tions and new ac­cel­er­a­tors. Sub­stan­tial beam-losses are dri­ven by a ver­ti­cal head-tail in­sta­bil­ity, which has also lim­ited beam in­ten­sity. Beam-based im­ped­ance mea­sure­ments sug­gest the in­sta­bil­ity is dri­ven by a low-fre­quency nar­row­band im­ped­ance, but its phys­i­cal ori­gin re­mains un­known. More gen­er­ally, re­search into the na­ture of the in­sta­bil­ity is hin­dered with­out a de­tailed trans­verse im­ped­ance model. This paper pre­sents a sur­vey of ver­ti­cal im­ped­ance es­ti­mates for ISIS equip­ment, using an­a­lyt­i­cal meth­ods, low fre­quency CST sim­u­la­tions and lab-based coil mea­sure­ments. The final im­ped­ance es­ti­mate is then used as an input to a new lin­earised Vlasov solver, and pre­dicted growth rates com­pared with pre­vi­ously ob­tained ex­per­i­men­tal re­sults.  
slides icon Slides TUC4I2 [4.374 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4I2  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4C1 Beam Coupling Impedance of the Main Extraction Kickers in the CERN PS 178
 
  • M. Neroni, M.J. Barnes, A. Lasheen, C. Vollinger
    CERN, Meyrin, Switzerland
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • B.K. Popovic
    ANL, Lemont, Illinois, USA
 
  In view of the High Lu­mi­nos­ity (HL) up­grade of the LHC, the beam in­ten­sity must be dou­bled in the in­jec­tor chain. To per­form re­li­able beam dy­nam­ics sim­u­la­tions, the beam cou­pling im­ped­ance in the in­jec­tors, such as the Pro­ton Syn­chro­tron (PS), must be fol­lowed closely by in­clud­ing all con­tribut­ing el­e­ments into the im­ped­ance model. The ex­ist­ing kicker mag­nets of the PS had been op­ti­mized for large kick strength and short rise/fall times, but not nec­es­sar­ily to min­imise beam cou­pling im­ped­ance. Hence, un­wanted beam in­duced volt­age can build up in their elec­tri­cal cir­cuits, with an im­pact on the beam. The beam cou­pling im­ped­ances of the two main kicker mag­nets used for the fast ex­trac­tion from PS, the KFA71 and KFA79, are ex­ten­sively char­ac­ter­ized in this study. In par­tic­u­lar, elec­tro­mag­netic sim­u­la­tion re­sults for the lon­gi­tu­di­nal and trans­verse cou­pling im­ped­ance are shown. The crit­i­cal im­ped­ance con­tri­bu­tions are iden­ti­fied, and their ef­fect on beam sta­bil­ity is dis­cussed. More­over, the im­pact of the cable ter­mi­na­tions on the elec­tro­mag­netic field pat­tern and pos­si­ble mit­i­ga­tion tech­niques are pre­sented, pro­vid­ing a com­plete im­ped­ance eval­u­a­tion of the en­tire kicker in­stal­la­tion.  
slides icon Slides TUC4C1 [2.715 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4C1  
About • Received ※ 30 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4C2 Mitigating Collimation Impedance and Improving Halo Cleaning with New Optics and Settings Strategy of the HL-LHC Betatron Collimation System 183
 
  • B. Lindström, R. Bruce, X. Buffat, R. De Maria, L. Giacomel, P.D. Hermes, D. Mirarchi, N. Mounet, T.H.B. Persson, S. Redaelli, R. Tomás García, F.F. Van der Veken, A. Wegscheider
    CERN, Meyrin, Switzerland
 
  Funding: Work supported by the HL-LHC project
With High Lu­mi­nos­ity Large Hadron Col­lider (HL-LHC) beam in­ten­si­ties, there are con­cerns that the beam losses in the dis­per­sion sup­pres­sors around the be­ta­tron clean­ing in­ser­tion might ex­ceed the quench lim­its. Fur­ther­more, to max­i­mize the beam life­time it is im­por­tant to re­duce the im­ped­ance as much as pos­si­ble. The col­li­ma­tors con­sti­tute one of the main sources of im­ped­ance in HL-LHC, given the need to op­er­ate with small col­li­ma­tor gaps. To im­prove this, a new op­tics was de­vel­oped which in­creases the beta func­tion in the col­li­ma­tion area, as well as the sin­gle pass dis­per­sion from the pri­mary col­li­ma­tors to the down­stream shower ab­sorbers. Other pos­si­ble im­prove­ments from orbit bumps, to fur­ther en­hance the lo­cally gen­er­ated dis­per­sion, and from asym­met­ric col­li­ma­tor set­tings were also stud­ied. The new so­lu­tions were par­tially tested with 6.8 TeV beams at the LHC in a ded­i­cated ma­chine ex­per­i­ment in 2022. In this paper, the new per­for­mance is re­viewed and prospects for fu­ture op­er­a­tional de­ploy­ment are dis­cussed.
 
slides icon Slides TUC4C2 [2.222 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4C2  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3I1 Self-Consistent Injection Painting for Space Charge Mitigation 258
 
  • N.J. Evans, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • T.V. Gorlov, A.M. Hoover
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was conducted at UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy, with partial funding provided by Field Work Proposal ORNL-ERKCS41.
I will pre­sent re­sults of ex­per­i­ments at the Spal­la­tion Neu­tron Source to im­ple­ment a method of phase space paint­ing we refer to as ¿eigen­paint­ing¿, in which beam is in­jected along one eigen­vec­tor of the trans­fer ma­trix of a ring with full cou­pling.  The method and re­sul­tant dis­tri­b­u­tion were ini­tially pro­posed by Danilov al­most to lin­earize the space charge force, min­i­miz­ing space charge tune spread. In the the­o­ret­i­cally ideal case this so-called Danilov dis­tri­b­u­tion has uni­form charge dis­tri­b­u­tion, el­lip­ti­cal en­ve­lope in real-space, and a van­ish­ing 4D trans­verse emit­tance. Such a beam can be main­tained through­out in­jec­tion. The Danilov dis­tri­b­u­tion has im­pli­ca­tions for in­creas­ing beam in­ten­sity be­yond the con­ven­tional space charge limit through a re­duc­tion of both tune spread and shift, and in­creas­ing col­lider per­for­mance. This talk will pre­sent cur­rent lim­its on beam qual­ity, and de­tails of the prepa­ra­tion of the op­tics in the SNS ac­cu­mu­la­tor ring, in­clud­ing the in­stal­la­tion of new so­le­noid mag­nets. The sta­tus of ex­per­i­ments to im­prove beam qual­ity and char­ac­ter­ize the in­ter­est­ing dy­nam­i­cal im­pli­ca­tions of the defin­ing fea­tures of the Danilov dis­tri­b­u­tion will also be dis­cussed.
 
slides icon Slides WEC3I1 [2.687 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3I1  
About • Received ※ 28 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3I2 Mitigation of Space Charge Effects in RHIC and Its Injectors 264
 
  • V. Schoefer, C.J. Gardner, K. Hock, H. Huang, K. Zeno
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The RHIC col­lider physics pro­gram, in par­tic­u­lar its po­lar­ized pro­ton and low en­ergy heavy ion com­po­nents, pre­sent unique chal­lenges for main­tain­ing col­lider per­for­mance in the pres­ence of space charge ef­fects. Po­lar­ized beam per­for­mance is es­pe­cially sen­si­tive to emit­tance in­creases, since they de­crease both the lu­mi­nos­ity and po­lar­iza­tion. Op­er­a­tion of the col­lider with gold beams at sub-in­jec­tion en­er­gies (down to 3.85 GeV/n Au) with space charge tune shifts up to 0.1 re­quired spe­cial care to op­ti­mize both the ion life­time and its in­ter­ac­tion with the elec­tron-beam cooler. We de­scribe the op­er­a­tional ex­pe­ri­ence in these modes and some of the mit­i­ga­tion ef­forts.
 
slides icon Slides WEC3I2 [10.503 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3I2  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C1 Beyond 1-MW Scenario in J-Parc Rapid-Cycling Synchrotron 270
 
  • K. Yamamoto, T. Morishita, K. Moriya, H. Okita, P.K. Saha, Y. Shobuda, F. Tamura, I. Yamada, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The 3-GeV rapid cy­cling syn­chro­tron at the Ja-pan Pro-ton Ac­cel­er­a­tor Re­search Com­plex was de­signed to provid 1-MW pro­ton beams to the Ma­te­r­ial and Life Sci-ence Ex­per­i­men­tal Fa­cil­ity and Main Ring. Thanks to the im­prove­ment works of the ac­cel­er­a­tor sys­tem, we suc­cess-fully ac­cel­er­ate 1-MW beam with quite small beam loss. Cur­rently, the beam power of RCS is lim­ited by the lack of anode cur­rent in the RF cav­ity sys­tem rather than the beam loss. Re­cently we de­vel­oped a new ac­cel­er­a­tion cav­ity that can ac­cel­er­ate a beam with less anode cur­rent. This new cav­ity en­ables us not only to re­duce re­quire-ment of the anode power sup­ply but also to ac­cel­er­ate more than 1-MW beam. We have started to con­sider the way to achieve be­yond 1-MW beam ac­cel­er­a­tion. So far, it is ex­pected that up to 1.5-MW beam can be ac­cel­er­ated after re­place­ment of the RF cav­ity. We have also con­tin-ued study to achieve more than 2 MW beam in J-PARC RCS.  
slides icon Slides WEC3C1 [2.787 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C1  
About • Received ※ 25 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C2 High Energy Cooling 274
 
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
 
  The paper con­sid­ers meth­ods of par­ti­cle cool­ing ap­plic­a­ble to beam cool­ing in high en­ergy hadron col­lid­ers at the col­li­sion en­ergy. Presently, there are two major meth­ods of the cool­ing the elec­tron cool­ing and sto­chas­tic cool­ing. The later, in ap­pli­ca­tion to col­lid­ers, re­quires ex­cep­tion­ally large fre­quency band of cool­ing sys­tem. Presently two meth­ods are con­sid­ered. They are the op­ti­cal sto­chas­tic cool­ing (OSC) and the co­her­ent elec­tron cool­ing (CEC). OSC and CEC are es­sen­tially ex­ten­sions of mi­crowave sto­chas­tic cool­ing, op­er­at­ing in 1-10 GHz fre­quency range, to the op­ti­cal fre­quen­cies en­abling bands up to 30-300 THz. The OSC uses un­du­la­tors as a pickup and a kicker, and an op­ti­cal am­pli­fier for sig­nal am­pli­fi­ca­tion, while the CEC uses an elec­tron beam for all these func­tions. We dis­cuss major lim­i­ta­tions, ad­van­tages and dis­ad­van­tages of elec­tron and sto­chas­tic cool­ing sys­tems.  
slides icon Slides WEC3C2 [1.054 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C2  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C3 Simulations and Measurements of Betatron and Off-momentum Cleaning Performance in the Energy Ramp at the LHC 279
 
  • N. Triantafyllou, R. Bruce, M. D’Andrea, K.A. Dewhurst, B. Lindström, D. Mirarchi, S. Redaelli, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  The Large Hadron Col­lider (LHC) is equipped with a mul­ti­stage col­li­ma­tion sys­tem that pro­tects the ma­chine against un­avoid­able beam losses at large be­ta­tron and en­ergy off­sets at all stages of op­er­a­tion. Ded­i­cated val­i­da­tions and an un­der­stand­ing in sim­u­la­tions of the col­li­ma­tion per­for­mance are cru­cial for the en­ergy ramp from 450 GeV to 6.8 TeV be­cause com­plex changes of op­tics and orbit take place in this phase. In­deed, the be­ta­tron func­tions are re­duced in all ex­per­i­ments for an ef­fi­cient setup of the col­li­sions at top en­ergy. In this paper, sim­u­la­tions of the be­ta­tron and off-mo­men­tum clean­ing dur­ing the en­ergy ramp are pre­sented. A par­tic­u­lar focus is given to the off-mo­men­tum losses at the start of the ramp. The sim­u­la­tion re­sults are bench­marked against ex­per­i­men­tal data, demon­strat­ing the ac­cu­racy of the newly de­vel­oped tools used for the sim­u­la­tions.  
slides icon Slides WEC3C3 [1.641 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C3  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4I1 RF Systems of J-PARC Proton Synchrotrons for High-Intensity Longitudinal Beam Optimization and Handling 305
 
  • F. Tamura, R. Miyakoshi, M. Nomura, H. Okita, T. Shimada, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Hara, K. Hasegawa, C. Ohmori, K. Seiya, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  The ap­pli­ca­tion of mag­netic alloy (MA) cores to the ac­cel­er­at­ing rf cav­i­ties in high in­ten­sity pro­ton syn­chro­trons was pi­o­neered for the J-PARC syn­chro­trons, the RCS and MR. The MA loaded cav­i­ties can gen­er­ate high ac­cel­er­at­ing volt­ages. The wide­band fre­quency re­sponse of the MA cav­ity en­ables the fre­quency sweep to fol­low the ve­loc­ity change of pro­tons with­out the tun­ing loop. The dual har­monic op­er­a­tion, where a sin­gle cav­ity is dri­ven by the su­per­po­si­tion of the fun­da­men­tal and sec­ond har­monic rf volt­ages, is in­dis­pens­able for the lon­gi­tu­di­nal bunch shap­ing to al­le­vi­ate the space charge ef­fects in the RCS. These ad­van­tages of the MA cav­ity are also dis­ad­van­tages when look­ing at them from a dif­fer­ent per­spec­tive. Since the wake volt­age con­sists of sev­eral har­mon­ics, which can cause bucket dis­tor­tion or cou­pled-bunch in­sta­bil­i­ties, the beam load­ing com­pen­sa­tion must be mul­ti­har­monic. The op­er­a­tion of tubes in the final stage am­pli­fier is not triv­ial when ac­cel­er­at­ing very high in­ten­sity beams; the out­put cur­rent is high and the anode volt­ageis also mul­ti­har­monic. We sum­ma­rize our ef­fort against these is­sues in the op­er­a­tion of the RCS and MR for more than 10 years.  
slides icon Slides WEC4I1 [6.932 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4I1  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4I2 Development of Dual-harmonic RF System for CSNS-II 312
 
  • X. Li, X. Li, W. Long, W.J. Wu, C.L. Zhang
    IHEP, Beijing, People’s Republic of China
  • Y. Liu
    DNSC, Dongguan, People’s Republic of China
  • B. Wu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The up­grade of the China Spal­la­tion Neu­tron Source (CSNS-II) en­com­passes the de­vel­op­ment of a dual har-monic RF sys­tem for the Rapid Cy­cling Syn­chro­tron (RCS). The ob­jec­tive of this sys­tem is to achieve a maxi-mum sec­ond har­monic volt­age of 100 kV. To meet this re­quire­ment, a high gra­di­ent cav­ity is being used in place of the tra­di­tional fer­rite loaded cav­ity. Mag­netic alloy (MA) loaded cav­i­ties, which can at­tain very high field gra­di­ents, have demon­strated their suit­abil­ity for high-in­ten­sity pro­ton syn­chro­trons. As a re­sult, de­sign­ing an RF sys­tem with MA-loaded cav­i­ties has emerged as a pri­mary focus. Over the past decade, sub­stan­tial ad-vance­ments have been made in the de­vel­op­ment of MA-loaded cav­i­ties at CSNS. This paper pro­vides an overview of the RF sys­tem that in­cor­po­rates the MA-loaded cav­ity and pre­sents the high-power test re­sults of the sys­tem.  
slides icon Slides WEC4I2 [6.449 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4I2  
About • Received ※ 28 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4C1 Magnetic Alloy Loaded Cavities in J-PARC and CERN 316
 
  • C. Ohmori
    KEK, Ibaraki, Japan
  • M.M. Paoluzzi
    CERN, Meyrin, Switzerland
 
  Funding: This work was supported by JSPS KAKENHI Grant Number 19KK0078 and 18K11930.
Mag­netic Alloy loaded cav­i­ties have been used in seven syn­chro­trons in J-PARC and CERN. In this paper, we will re­view va­ri­ety of the cav­ity tech­nolo­gies to sat­isfy the re­quire­ments for the beam ac­cel­er­a­tion, de­cel­er­a­tion, ma­nip­u­la­tion and in­sta­bil­ity damp­ing. This paper also con­tains im­prove­ments of cav­ity cores by mag­netic an­neal­ing scheme, qual­ity con­trol of cores dur­ing pro­duc­tion, the cool­ing meth­ods of mag­netic alloy cores: di­rect water cool­ing and in­di­rect one using cop­per discs, con­trol of cav­ity band­widths from broad to nar­row bands, and the ways to drive RF cav­i­ties by tube and rad-hard solid-state am­pli­fiers.
 
slides icon Slides WEC4C1 [3.371 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C1  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4C2 Multiharmonic Buncher for the Isolde Superconducting Recoil Separator Project 321
 
  • J.L. Muñoz, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, S. Varnasseri
    ESS Bilbao, Zamudio, Spain
  • I. Martel
    University of Huelva, Huelva, Spain
 
  Funding: This work has been supported by the European Union ¿NextGenerationEU program
The ISOLDE Su­per­con­duct­ing Re­coil Sep­a­ra­tor (ISRS) is a pro­posal of build­ing a very com­pact sep­a­ra­tor ring as an in­stru­ment in the HIE-ISOLDE fa­cil­ity. The in­jec­tion of the HIE-ISOLDE beam into this ring re­quires a more com­pact bunch struc­ture, so a Multi-Har­monic Buncher de­vice is pro­posed for this task. The MHB will op­er­ate at a fre­quency of 10.128 MHz, which is a 10% of the linac fre­quency, and would be in­stalled be­fore the RFQ. The MHB is des­gined as a two elec­trodes sys­tem, and the MHB sig­nal, com­posed for the first four har­mon­ics of the fun­da­men­tal fre­quency, is fed into the elec­trodes that are con­nected to the cen­tral con­duc­tor of a coax­ial wave­guides. The full de­sign of the MHB is pre­sented, in­clud­ing elec­tro­mag­netic op­ti­miza­tion of the elec­trode shape, op­ti­miza­tion of the weights of each of the har­monic con­tri­bu­tion, me­chan­i­cal and ther­mal de­sign of the struc­ture. The RF gen­er­a­tion and elec­tron­ics to power up the de­vice are also pre­sented. A so­lu­tion that gen­er­ates di­rectly the com­posed sig­nal andis then am­pli­fied by a solid state power am­pli­fier is also pre­sented in this con­tri­bu­tion.
 
slides icon Slides WEC4C2 [4.165 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C2  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP01 ESS-Bilbao RFQ Power Coupler: Design, Simulations and Tests 433
 
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ESS-Bil­bao RFQ power cou­pler is pre­sented. The RFQ op­er­ates at 352.2 MHz and will ac­cel­er­ate the 32 mA pro­ton beam ex­tracted from the ion source up to 3.0MeV. The RFQ will com­plete the ESS-Bil­bao in­jec­tor, that can be used by the AR­GITU neu­tron source or as a stand-alone fa­cil­ity. The ma­chin­ing of the RFQ is fin­ished, and vac­uum tests as well as low power RF mea­sure­ments have been car­ried out. The pre­sented power cou­pler is a first it­er­a­tion of the de­vice, de­signed to be of eas­ier and faster man­u­fac­tur­ing than what might be needed for fu­ture up­grades of the linac. The cou­pler does not have ac­tive cool­ing and no braz­ing has been needed to as­sem­ble it. It can op­er­ate at the RF power re­quired by the RFQ but at lower duty cy­cles. The di­elec­tric win­dow is made of poly­meric ma­te­r­ial, so it can with­hold the as­sem­bly using vac­uum seals and bolts. De­sign and man­u­fac­tur­ing is­sues are re­ported in the paper, as well as the RF tests that have been car­ried out at medium power. Mul­ti­pact­ing cal­cu­la­tions com­pared to mea­sured val­ues dur­ing con­di­tion­ing are also re­ported. High power tests of the cou­pler have also been per­formed in the ISIS-FETS RFQ and are also de­scribed here.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP01  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP02 FFA Magnet for Pulsed High Power Proton Driver 436
 
  • J.-B. Lagrange, C.W. Jolly, D.J. Kelliher, A.P. Letchford, S. Machida, I. Rodríguez, C.T. Rogers, J.D. Speed
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.J. Brooks
    BNL, Upton, New York, USA
  • T.-J. Kuo
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Fixed Field Al­ter­nat­ing gra­di­ent (FFA) ac­cel­er­a­tor is con­sid­ered as a pro­ton dri­ver for the next gen­er­a­tion spal­la­tion neu­tron source (ISIS-II). To demon­strate its suit­abil­ity for high in­ten­sity op­er­a­tion, an FFA pro­ton pro­to­type ring is planned at RAL, called FETS-FFA. The main mag­nets are a crit­i­cal part of the ma­chine, and sev­eral char­ac­ter­is­tics of these mag­nets re­quire at­ten­tion, such as dou­blet spi­ral struc­ture, es­sen­tial op­er­a­tional flex­i­bil­ity in terms of ma­chine op­tics and con­trol of the fringe field ex­tent from the non­lin­ear op­tics point of view. This paper will dis­cuss the de­sign of the pro­to­type mag­net for FETS-FFA ring.  
poster icon Poster THBP02 [5.871 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP02  
About • Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP03 ESS-Bilbao RFQ Static Tuning Algorithm and Simulation 440
 
  • J.L. Muñoz, I. Bustinduy, A. Conde, N. Garmendia, P.J. González, J. Martin, V. Toyos
    ESS Bilbao, Zamudio, Spain
 
  The ESS-Bil­bao RFQ op­er­ates at 352.2 MHz. The ma­chin­ing of the four RFQ seg­ments has fin­ished and the as­sem­bly and tun­ing op­er­a­tions will fol­low shorly. The sta­tic tun­ing and field flat­ness are pro­vided by an array of 60 plunger tuners, dis­trib­uted along the 3.2 me­ters length of the struc­ture. There are four tuners per seg­ment per quad­rant, ex­cept for one of the seg­ments where the ports are used by the power cou­plers. A bead-pull setup will pro­vide the mea­sure­ments of the field pro­files, that will be col­lected in a ma­trix built up with the con­tri­bu­tions of in­di­vid­ual tuners. The con­ven­tional ap­proach of in­vert­ing the ma­trix to get the op­ti­mum tuners dis­tri­b­u­tion is ex­plored, as well as ad­di­tional op­ti­miza­tion method. Par­tic­u­larly, a ge­netic op­ti­miza­tion al­go­rithm pro­vides a very suc­ces­ful tun­ing of the RFQ. The so­lu­tion pro­vided by this ap­proach will be used as the ini­tial con­fig­u­ra­tion of the tuners be­fore the bead-pull mea­sure­ments are car­ried out. Ad­di­tion­ally, sta­tic and dy­namic tun­ing of the RFQ is stud­ied by high per­for­mance com­put­ing sim­u­la­tions of the RFQ. The analy­sis of the in-house com­pu­ta­tional elec­tro­mag­net­ics suite used for these tasks is also dis­cussed in this paper.  
poster icon Poster THBP03 [2.285 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP03  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP04 Machine Protection System for the Proposed TATTOOS Beamline at HIPA 443
 
  • J. Snuverink, P. Bucher, R. Eichler, M. Hartmann, D.C. Kiselev, D. Reggiani, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  IM­PACT (Iso­tope and Muon Pro­duc­tion with Ad­vanced Cy­clotron and Tar­get Tech­nol­ogy) is a pro­posed up­grade pro­ject for the High In­ten­sity Pro­ton Ac­cel­er­a­tor (HIPA) at the Paul Scher­rer In­sti­tute (PSI). As part of IM­PACT, a new ra­dioiso­tope tar­get sta­tion, TAT­TOOS (Tar­geted Alpha Tu­mour Ther­apy and Other On­co­log­i­cal So­lu­tions) is planned. The TAT­TOOS beam­line and tar­get will be lo­cated near the UCN (Ultra Cold Neu­tron source) tar­get area, branch­ing off from the main UCN beam­line. In par­tic­u­lar, the 590 MeV pro­ton beam­line is de­signed to op­er­ate at a beam in­ten­sity of 100 ¿A (60 kW), re­quir­ing a con­tin­u­ous split­ting of the main beam by an elec­tro­sta­tic split­ter. The phi­los­o­phy of the ma­chine pro­tec­tion sys­tem (MPS) for the TAT­TOOS beam­line will not dif­fer sig­nif­i­cantly from the one al­ready im­ple­mented for HIPA. How­ever, it is par­tic­u­larly im­por­tant for TAT­TOOS to avoid dam­age to the tar­get due to ir­reg­u­lar beam con­di­tions. We will show the di­ag­nos­tic sys­tems in­volved and how the re­quire­ments of the ma­chine pro­tec­tion sys­tem can be met. Emer­gency sce­nar­ios and pro­tec­tive mea­sures are also dis­cussed.  
poster icon Poster THBP04 [3.228 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP04  
About • Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP05 CERN SPS Dilution Kicker Vacuum Pressure Behaviour under Unprecedented Beam Brightness 447
 
  • F.M. Velotti, M.J. Barnes, W. Bartmann, H. Bartosik, E. Carlier, G. Favia, I. Karpov, K.S.B. Li, N. Magnin, L. Mether, V. Senaj, P. Van Trappen, C. Zannini
    CERN, Meyrin, Switzerland
 
  The Super Pro­ton Syn­chro­tron (SPS) is the sec­ond largest syn­chro­tron at CERN and pro­duces high-bright­ness beams for the Large Hadron Col­lider (LHC). Re­cently, the di­lu­tion kicker (MKDH) of the SPS beam dump sys­tem (SBDS) has demon­strated unan­tic­i­pated be­hav­iour under high beam bright­ness con­di­tions. Dur­ing the 2022 and 2023 beam com­mis­sion­ing, the MKDH, which is rou­tinely pulsed at high volt­age, was sub­jected to in­ten­si­ties of up to 288 bunches of 2·1011 pro­tons per bunch and bunch lengths as low as 1.5 ns. Under these con­di­tions, all the SPS kick­ers and septa ex­hib­ited a rapid vac­uum pres­sure rise and a sig­nif­i­cant tem­per­a­ture in­crease with the MKDH play­ing the dom­i­nant ef­fect in re­strict­ing the max­i­mum line den­sity that can be at­tained. This paper pre­sents the re­sults of the col­lected data, em­pha­sizes the de­pen­dence on beam pa­ra­me­ters, and in­tro­duces a prob­a­bilis­tic model to il­lus­trate the ef­fect of MKDH con­di­tion­ing ob­served to fore­cast the pres­sure be­hav­iour. Fi­nally, po­ten­tial coun­ter­mea­sures and out­look are dis­cussed.  
poster icon Poster THBP05 [1.913 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP05  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I3 Summary of the Working Group C on Accelerator Systems 670
 
  • S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • H. Huang
    BNL, Upton, New York, USA
  • P.K. Saha
    JAEA/J-PARC, Tokai-mura, Japan
 
  This is a sum­mary of the pre­sen­ta­tions and dis­cus­sions of the Ac­cel­er­a­tor Sys­tem work­ing group at the 68th ICFA Ad­vanced Beam Dy­nam­ics Work­shop on High-In­ten­sity and High-Bright­ness Hadron Beams.  
slides icon Slides FRA2I3 [0.262 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I3  
About • Received ※ 22 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 15 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)