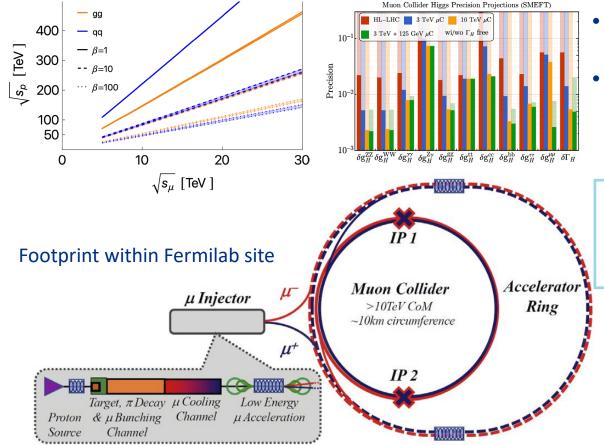


Challenging of muon acceleration for muon colliders


Story based on Fermilab Accelerator Complex Evolution

Katsuya Yonehara

HB2023 Workshop

October 10, 2023

Discovery Machine MuC Design Parameter

- MuC COM can be fully utilized for physics events
- Clean lepton collision event allows for precise measurements
- @ 3 TeV \sim 1 ab⁻¹ 5 years
- @ 10 TeV \sim 10 ab⁻¹ 5 years

$$\mathcal{L} = \frac{N_{\mu} + N_{\mu} - \cdot f N_{IP} R}{4\pi \sigma_{\chi} \cdot \sigma_{y}}$$

f: Revolution of beam in the ring N_{IP} : Number of interaction points

R: Beam repetition rate

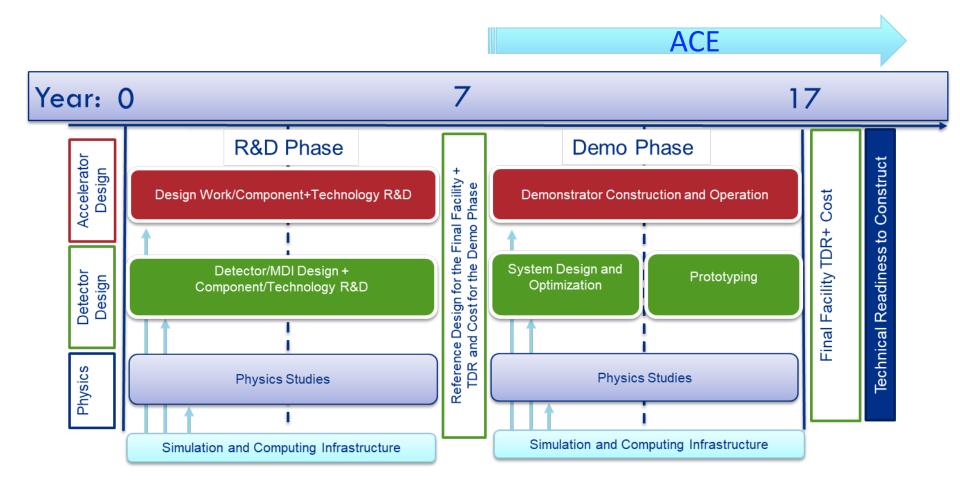
Muon Acceleration Requirement

- Make muon beam phase space as small as possible (small σ_x , σ_y)
- Maintain muon beam intensity as much as possible (large N_{μ^+} , N_{μ^-})

Challenge in Initial Stage Muon Acceleration

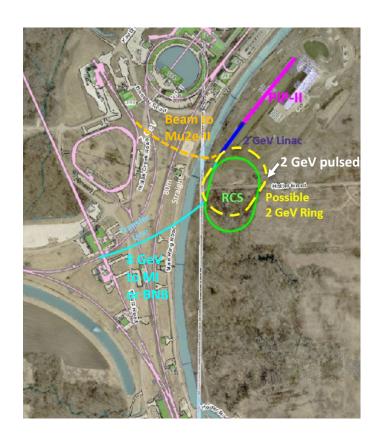
- Proton Driver (Find extra slides in "Backup")
 - Intense proton beam (~10¹⁴ protons per bunch, small spot size ~5 mm, bunch length 1~3 ns, and repetition is 5~10 Hz) with kinetic energy range 5-20 GeV
 - Beam parameter is limited by the space charge effect
- Pion Production Target and Pion/Muon Capture Channel
 - Target must stand for the impact of extremely intense proton beam
 - Heat deposition system, beam dump, and beam absorbers are needed without losing production and capture efficiencies
 - Capture magnet (baseline design is a solenoid magnet) must survive in extremely high radiation environments
- Muon Ionization Cooling (Find extra slides in "Backup")
 - Maximize cooling decrement and minimize particle loss

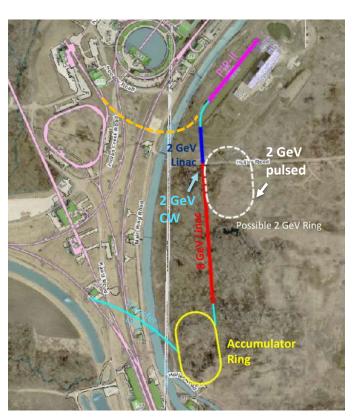
R&D are necessary to tackle these challenges


Accelerator Complex Evolution (ACE) plan

- Increase protons on target to DUNE Phase I detector by
 - Shortening the Main Injector cycle time to increase beam power
 - Upgrading target systems for up to 2.4 MW
 - Improving reliability of the Complex
- Establish a project to build a Booster replacement to
 - Provide a robust and **reliable** platform for the future of the Accelerator Complex
 - Ensure high intensity for DUNE Phase II CP-Violation measurement
 - Enable the capability of the complex to serve precision experiments and searches for new physics with beams from 1-120 GeV
 - Create the capacity to adapt to new discoveries
 - Supply the high-intensity proton source necessary for future multi-TeV accelerator research

Courtesy of M. Convery, ACE workshop 2023 at Fermilab J. Eldred also presents in HB2023

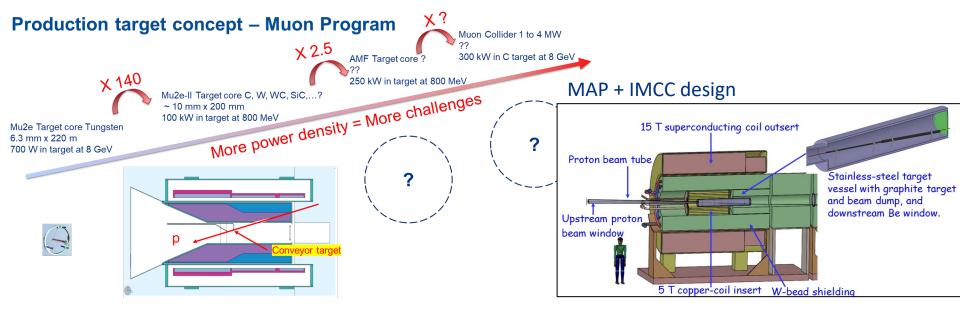



Suggested US Muon Collider R&D timeline to P5

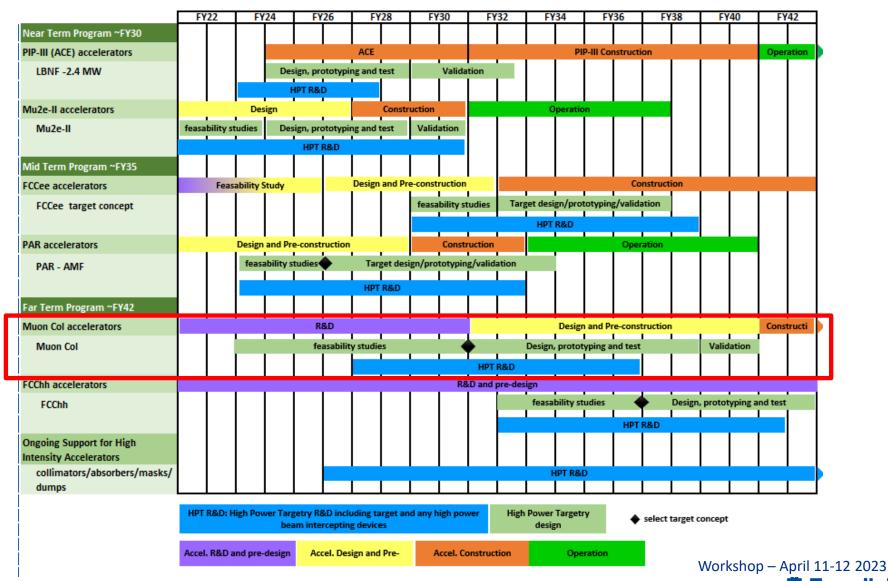
Example Booster replacement options and possible add-ons

Courtesy of M. Convery, ACE workshop 2023 at Fermilab

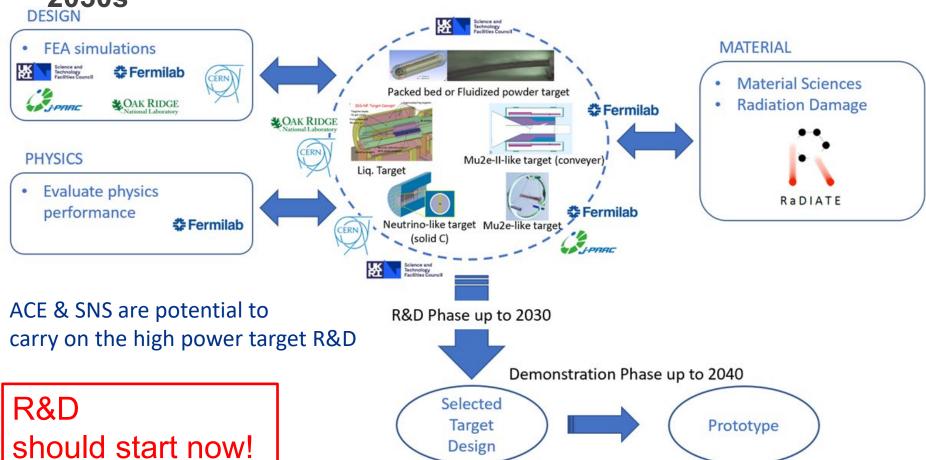
Possible 8 GeV Booster Beam parameter in Demo Phase


- Share beam with BNB and LBNF programs
- Booster provides 1.8µs pulses every 20 Hz of 6.5e12 protons at 8 GeV
- Impacted by MI cycle rate, but at least as high as present

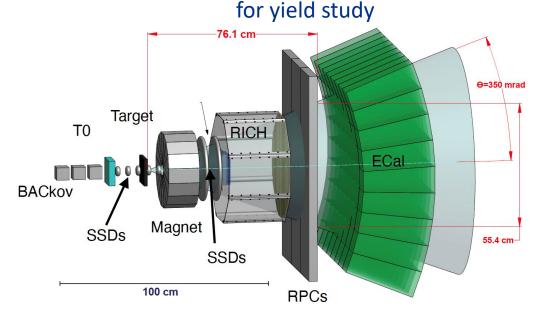
		PIP-II Booster		
Operation scenario	Present	PIP-II	Α	В
MI 120 GeV ramp rate	1.333	1.2	0.9	0.7
Booster intensity	4.5			6.5
Booster ramp rate	15			20
Number of batches	12		12	
MI power	0.865	1.2	1.7	2.14
cycles for 8 GeV	6	12	6	2
Available 8 GeV power	29	83	56	24


Milestone of Targetry R&D for Future Projects

- High Power Target technology has been developed for neutrino program
 - Established 1.2 MW graphite target for LBNF
 - ACE plan pushes the target R&D to produce 2+ MW target
- ACE plan opens more high power target applications
 - Target R&D roadmap to support Mu2e+, AMF and MuC



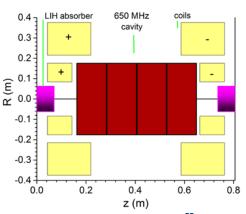
Proposed Roadmap of Targetry R&D


International Targetry R&D programs

 MuC targetry is included in the proposed GARD High Power Targetry Roadmap with a plan to have a prototype in the late 2030s

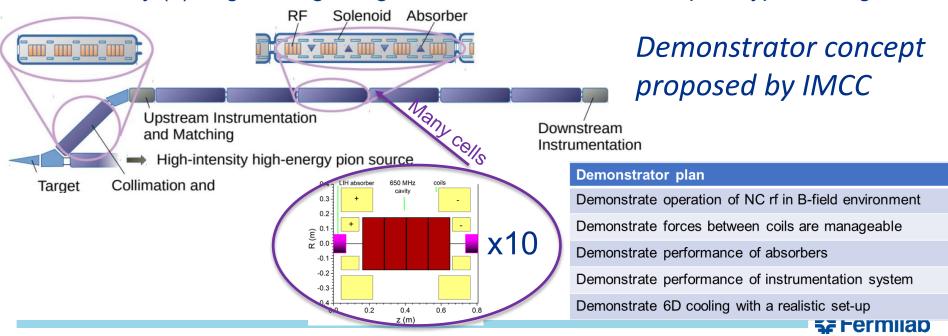
Optimize MuC Target performance

- Select the building material including shielding block, beam window based on the material study
 - Study radiation & thermal stresses of building materials (RaDIATE)
- Design dimensions of target system from engineering and physics point views
 - Pion yield study
 - Angular distribution
 - Target Z dependence
 - Energy dependence
 - Hadronic shower



Muon Cooling Channel Hardware R&D

Collaborate with International Muon Collider Collaboration (IMCC)


- High gradient RF cavity in strong magnetic fields
 - Study cold RF cavity with various wall materials (Cu, Be, AI)
 - Beam window
 - Power coupler
 - High power RF source
 - Gas-plasma process in gas-filled cavities (beam needed)
- Prototype cooling cell
 - Integrate high field magnet coils
 - Infrastructure
 - LN2
 - RF waveguide
 - Beam instrumentation

Example cooling cell

Muon Collider cooling: Path forward (demonstrator) Collaborate with International Muon Collider Collaboration (IMCC)

- While the physics of ionization cooling has been shown it is critical to benchmark a realistic MuC cooling lattice
 - This will give us the input, knowledge, and experience to design a real, buildable cooling channel for a MuC
 - Next **5 years:** (1) A conceptual design of a demonstrator facility that allows testing the technology for cooling (2) Site exploration & cost estimate of a demo facility (3) Engineering design & start fabrication of a 1.5 prototype cooling cell

Summary

- Concepts of Muon Colliders were reviewed by the HEP community in the US Snowmass and the P5 townhall meetings
 - White paper contains comprehensive narratives of the concepts which includes ACE and Booster replacement plan
 - P5 will release the report in December
- R&D for challenging of muon acceleration was presented in the meetings
 - Muon Cooling Channel Hardware R&D and Demonstrator will be a critical path; These concepts are shared with IMCC
 - Target R&D will utilize 8 and 120 GeV ACE beam in synergy with the Fermilab physics program; SNS shows an interest in conducting the R&D related with target and proton driver as well

