PAUL SCHERRER INSTITUT

Joachim Grillenberger :: Large Research Facilities :: Paul Scherrer Institute

The High Intensity Proton Accelerator Facility Status and Perspectives

High Intensity Proton Accelerator 50th Anniversary in 2024

High Intensity Proton Accelerator Facility

590 MeV Ring Cyclotron at PSI in operation since 49 years (19.2.1974 first muons)

Beam energy:	590 MeV		
Beam current:	2.4 mA		
Beam power:	1.4 MW		
Relative losses:	12·10 ⁻⁴		
Single turn extraction			
4 cavities (50.63 MHz):	850 kVp		
1 Flattop (151 MHz):	550 kVp		
Harmonic number:	6		
Number of turns:	186		
8 sector magnets:	0.6 – 0.9 T		
R _{in} :	2.1 m		
R _{out} :	4.5 m		

Energy efficiency:

$$\eta_{acc} = \frac{P_{beam}}{P_{Grid}} = \frac{1.42 \ MW}{8 \ MW} = 0.18$$

Empirical Power Scaling Law

W. Joho, High intensity problems in cyclotrons, Proceedings of the 9th International Conference on Cyclotron and their Applications, pp. 337–47. Les Editions de Physique, BP 112, 91402 Orsay (France), ISBN 978-3-95450-160-1 (1981).

Page 6

Copper Cavities at PSI

- f = 50.6 MHz
- U_{max} = 1.2 MV (presently 850 kVp)
- $Q = 4.8 \cdot 10^4$
- Transfer of up to 400 kW power to the beam per cavity

Wall plug to beam efficiency:

- AC/DC: 90%
- DC/RF: 64%
- RF/beam: 55%
- All over: 32%

Injector 2 Cyclotron Commissioned in 1985

Beam power: 72 MV • 2.7 mA = **194 kW**

- beam energy: 72 MeV
- max. beam current: 2.7 mA
- 4 sector Magnets: 0.33 0.36 T
- weight per magnet: 180 tons
- 2 resonators: 50.63 MHz
- 2 flattop resonators:150 MHz
- harmonic number:10
- injection radius: 0.4 m
- extraction radius: 3.5 m
- 80 turns

Ongoing upgrade project for 3.0 mA and reliability

1995 the operation observed in Injector 2

- the same extraction rate without Flattops (accidently switched off)
- a higher extraction rate with reversed phase (accelerating mode, less turns)

Explained by the «vortex effect»

M. M. Gordon, The longitudinal space charge effect and energy resolution, In McIlroy[47],425pp. 305– 317 (1969)

S. Adam, Space charge effect in cyclotrons - from simulations to insights, In Comell[48],439pp. 446–448 (1995)

- Vortex motion stabilizes the bunch
- Space charge couples longitudinal and horizontal motion
- Longitudinal focusing (weak though)

- 1. Goal: reduce the number of turns from 83 to 60 for 3 mA (n⁻³ law)
 - \Rightarrow Increase energy gain per turn \Rightarrow Increase acceleration voltage

150 MHz Flattops not needed (Vortex Effect) double energy gain per turn

Already installed 2018

60 instead of 83 turns -> 3.0 mA according to $I \simeq \frac{1}{n^3}$ where n = number of turns

resonance frequency	50.6328 MHz
accelerating voltage	400 keV @ R _{out}
dissipated power	50kW @ 400kVp
Q	24'500
Tuning range	200 kHz
material cavity RF-wall	EN AW 1050
material structure	EN AW 5083
cooling water flow	15 m³/h
dimension	5.6 x 3.3 x 3 m
weight	7000 kg

New Resonator 2 Installed 20.02.2018

Resonator	type	material	frequency	gap voltage	Wall losses in cavity	incident power @ 2.4 mA Beam
1&3	Double gap cavity	aluminum	50 MHz	~ 420 kVp	~ 150 kW	~ 225 kW
2 & 4	Flattop cavity	aluminum	150 MHz	~ 31 kVp	~ 5 kW	\sim 14 kW
2 & 4 new	Single gap cavity	aluminum	50 MHz	~ 400 kVp @ extraction	~ 50 kW	~ 100 kW

M. Schneider, PSI

Status Injector 2 – Upgrade The new 50 MHz Resonators

Resonator 2:

- Installed in Injector 2 Cyclotron in 2018
- No tuner up to 2023

served very well as a vacuum chamber.....

Resonator 4:

- In test stand for tuner and power tests
- Treated with Aquadag (multipactoring)

Resonator 4: treated with Aquadag

Resonator 2 installed in Injector 2

Resonator 4 in test bunker Installation in 2024

Tuner for new Resonators tested in Resonator 4

Strong abrasion of contacts

- Tuners show abrasion caused by contact springs
- Tests with different materials, different spring preload, ... failed
- New concept was necessary

Finger contacts between vaccum vessel and plunger

- No spring contacts
- New vacuum vessel Al instead of steel
- Additional cooling channel on vacuum vessel
- Optimized geometry to reduce RF leaking into vessel
- New plunger with improved cooling channels

Installation of tuners during Shutdown 2023

Installation team

Coaxial transmission line (RL100-230, Spinner) New tuners installed

6. September 2023 first beam through Ring with 1 mA

Page 17

Resonator 2 Commissioning

Peaks shift as desired — higher energy gain per turn

- 2. Goal: Higher RF-voltage for new Resonators 2 + 4
- **3. Goal:** replace outdated amplifier chains for resonators 1 + 3

Resonator 4 Amplifier control unit

- Unit failed in June 2022
- 40 years old / no documentation
- No spare parts
- Amplifier replaced with two SSAs BBL200-A10000
- Will be used as drivers for Res. 1-4

Reduced beam current for 6 months 1.8 mA instead of 2 mA

Injector 2 – Upgrade Amplifiers

- 2. Goal: Higher RF-voltage for new Resonators 2 + 4
- **3. Goal:** replace outdated amplifier chains for resonators 1 + 3

Commissioning: Res 2 in 2023, Res 4 in 2024, Res 1 & 3 in 2025

High Intensity Proton Accelerator Facility Cockcroft – Walton

Cockcroft – Walton 870 keV, 30 mA

2020: HV breakdown due to scorched acrylic glas

SF₆ disposal

polishing

Cockcroft-Walton with 810 kV platform and acceleration tube ECR-source very reliable (>99%)

Recurring: burnt fibre optics

different supplier or laser transmission

Defect transformer in microwave amplifier No more support New solid state version

Status of the Ring Cyclotron

Current routine operation at 2 mA Reason: Injector 2 – Upgrade

• Vacuum improved (rad. hard In sealings)

- Electrostatic Elements shielded (RF)
- Cu–Cavities ready for 3.0 mA
- RF-Amplifiers need upgrade for 1.8 MW
- New long radial probe

Long Radial Probe Ring cyclotron Renewal Project

Not available since 2012 but important for beam dynamics

accelconf.web.cern.ch/ibic2020/papers/wepp33.pdf

- New mechanical drive
- New wire fork

Wires still burn out even with RF only Studies with C-nano tubes ongoing

150 MHz Flattop Cavity (1979)

72 MeV beam

3rd harmonic «flattop» cavity

- 151 MHz
- 550 kV (11% of main voltage)
- Q = 28000
- Gap = 0.25 m

- Larger phase acceptance (40° instead of 9°)
- Factor of 10 less losses at extraction

Probe RRL I just showed

Röntgen Emission Cavity 5

Ionisation chambers

Multipactoring Flattop Aquadag Coating

Aquadag to suppress secondary electron emission

Empirical Scaling Law by W. Joho¹

[1] W. Joho, High intensity problems in cyclotrons, Proceedings of the 9th International Conference on Cyclotron and their Applications, pp. 337–47. Les Editions de Physique, BP 112, 91402 Orsay (France), ISBN 978-3-95450-160-1 (1981).

- variation of accelerating voltage over the bunch length increases energy spread
- thus a third harmonic flattop resonator is used to **compensate the curvature** of the cavity voltage w.r.t. time (apparently no vortex effect in Ring cyclotron)

New 150 MHz Flattop Cavity for 3.0 mA

- Material choice: pure Aluminum
- New shape of the electrodes (increase peak shunt impedance)
- Improved cooling for 140 kW dissipated power
- New coupler design (ongoing)

174271 2119.4 eV

Availability of the Accelerator Facility

High availability is of uttermost importance for the users Secondary particle yield comes second

- Life-time of ball bearings 6 months (1 failure per year)
- Life-time of motor 3 years

Exchange flask

Hotcell

Target E – Upgrades

Challenges

- 50 kW on Target E
- Cooling (1700 K)
- Temperature resistant material
- Thermal stress (deformation)

- \Rightarrow Rotation 1 Hz (**bearings**)
- \Rightarrow Radiation, Cu-shielding cooled
- \Rightarrow Polycrystalline graphite
- ⇒ Spokes (thermal expansion) Slits in wheel

Bearings were the neuralgic spot

New ball bearings with solid state WS₂ lubricant by S. Makimura (J-Parc) & KOYO[®] Installed in 2019

30 – 50% increase in surface muon rate (measurement and simulation agree)

Beam position monitoring by current transmission measurement

Steps Towards a Higher Efficiency SINQ – Upgrade 2019

- Replacement of neutron guides
- Optimization of instruments
- Optimization of D₂O moderator geometry

- measured flux gains ranging from 2–30 depending on the instrument
- signal to noise ratio increased by a factor of 6
- The Accelerator's uptime and beam intensity remain the primary driving forces!

Steps Towards a Higher Performance Accelerator part

Increase Beam Power to 1.8 MW

- Understand and reduce losses
- More diagnostics and simulations
- Finish Injector 2 Upgrade (by 2025)
- Increase gap voltage in Ring (n⁻³ law)
 - More powerful RF-amplifiers (SSA?)
 - new flattop system
- Well trained operators and more beam development (A.I. does not exist...)

- The PSI accelerator has already deliverd a 1.4 MW beam in CW mode
- Major performance steps achieved by RF-upgrades
- The average availability now is 90%
- Number of short trips (<5 min) is >10 per day
- Modular design allows for fast and save repair (< 2days, 4h average)
- Energy efficiency is 0.18 (bare accelerator)
- High demand of Neutron Sources
- Since 2020 new neutron guides/ monochromators (2–30 more neutrons)
- New project IMPACT is on its way
- Operation until 2030+

https://www.psi.ch/en/impact CDR: https://www.dora.lib4ri.ch/psi/islandora/object/psi:41209

We have to/want to prepare for another 20-30 years of operation

Infrastructure, conventional systems, cooling, hotcells, etc are in good condition

10 Year Upgrade Plan

- **Electronics and Control System**
 - Replacement of CAMAC-based system
 - New Firmware and Control system integration
 - interlock integration and level adaption
- RF Renewal and/or Upgrade
 - new Flattop
 - Renewal / Upgrade of RF-amplifiers (SSD)
- Magnet Renewal and Spares
 - many coils over 50 years old
 - Bending magnets critical stock
- Diagnostics ٠
 - Fast Wire Scanners (beam current 3 mA)
 - BPMs in 590 MeV beamline
 - Profile monitors in 590 MeV beamline
 - Radial Probes (new wire material, e.g., nano tubes)
- Power Supplies
 - On-Going and recurring project
 - New design with Silicon Carbide
- Vacuum System

Injector 2 -2025 prestudies -2030 strategic decision

inventory stock keeping

started -2026 strategic started -2030 started -2026 promising

running -2026

Wir schaffen Wissen – heute für morgen

My thanks go to

- Markus Schneider
- My Colleagues
- Your attention!

