

Intense highly charged ion beams operation for heavy ion accelerators at IMP

L. Sun, <u>H. W. Zhao</u>

Institute of Modern Physics, CAS, 730000, Lanzhou, China

HB'23, Oct. 9~13, 2023, Geneva, Switzerland

D Heavy ion accelerators at IMP

- **D** Production and acceleration of high-intensity heavy ion beams
- □ Perspectives in ECRIS development

D Summary

Heavy ion accelerators at IMP (in operation)

HIRFL (Heavy Ion Research Facility in Lanzhou)

- ♦ Ion species: H~U
- Beam Energy: several MeV/u ~ 1 GeV/u
- User facility for:

Nuclear physics, ion beam applications...

CAFe2 (China Accelerator Facility for new Element)

- ♦ Ion species: M/Q≤3
- Beam Energy: 4-8 MeV/u
- User facility for:
 - Super Heavy Element synthesis

LEAF (Low Energy high-intensity heavy ion Accelerator Facility)

- Ion species: H~U
- Beam Energy: 0.3~1.0 MeV/u
- User facility for:
 - Atomic Physics. Astro Nuclear Physics. Material Science

Heavy ion accelerator HIAF at IMP (under construction)

SECRAL-II delivering high intensity heavy ion beams for HIRFL

Parameters	SECRAL II			
28 GHz μW Power (kW)	10.0			
18 GHz μW Power (kW)	2.0			
Axial Field Peaks (T)	3.7 (Inj.), 2.2 (Ext.)			
Mirror Length (mm)	420			
No. of Axial SNs	3			
B _r at r=63 mm (T)	2.06			
SC-material	NbTi			
Magnet Cooling	LHe bathing			
Chamber ID (mm)	125.0			
P _v (liter)	5.1			
Max. Power Density (kW/l)	2.3			
Dynamic cooling power (W)	6.0 (~8 L/h)			

SECRAL-II superconducting ECR ion source in routine operation for HIRFL

Recent technical advancement of SECRAL-II ion source

- More efficient plasma heating Optimized microwave heating scheme with
- tapered waveguide
- Vlasov launcher

More efficient plasma-chamber cooling Microchannel cooling chamber

Long-term operation at high-intensities of highly-charged beams

⁸⁶Kr²⁸⁺= 100 eµA, P_{rf} = 6.0 kW, Power density=1.16 kW/1

Operation for HIRFL SFC cyclotron

 129 Xe³²⁺= 200 eµA, P_{rf}= 7.0 kW, Power density=1.36 kW/1

High intensity highly-charged U beams preparing for SSC-linac

World record CW and pulsed beam intensities of ²³⁸U⁴⁶⁺ produced by SECRAL-II

Allows the acceleration of U beam up to 500 MeV/u with CSRm

2.2 times gain in beam intensity with 1.5 ms peak pulse

High intensity highly-charged U beams preparing for HIAF

World record CW intensities of highly-charged U beams produced by SECRAL-II

2023

SECRAL-II operation improved performance of HIRFL-SFC cyclotron

Beam intensities from SFC Cyclotron

SECRAL-II operation improved performance of HIRFL-SFC cyclotron

Beam Energies from SFC

CSRm performance enhancement together with other technical improvements

³⁶Ar¹⁵⁺

SECRAL-II: ~350 eµA □ ~4 times historical operation current □

- High current: SFC--8.5 AMeV/15 eµA
- CSR_m Beam Current Increase by a factor of 5

⁷⁸Kr²⁶⁺

SECRAL-II: ~280 eµA (not available before)

- High current: SFC--6 AMeV/12 eµA
- CSR_m Beam Current Increase by a factor of 10

¹²⁹Xe³²⁺

2023

SECRAL-II: ~200 eµA (not available before)

- High current : SFC—3.9 AMeV/8 eµA
- CSR_m Beam Current Increase by a factor of 5

High intensity SC heavy ion linac dedicated to SHE: CAFe2

- Ion species: M/Q≤3
- Beam Energy: 4-8 MeV/u
- User facility for:
 - **Super Heavy Element synthesis**

Acceleration of high intensity heavy ion beams by CAFe2

ECR ion source - LECR5,18GHz

50 50 40 20 -10 -10 -10 -10 -10 -10 -10 εrms -50 -50 -50 -50	=0.89 =0.11 m =15 77. µm = 0.07 77. µm &= 0.30 &= 0.10 m == 105 77. µm 0 -40 -30 -20 -10 0 n.rms ~0.07 тт	32% in 010 л 93% in 060 л, 100% in 120 л. 100% in 200 л. 100% in 200 л. 2011 99 Веал ситер 84383 54 е (ехtrapolati 10 20 30 40 50 7	um 50 μm 50 μm 40 μm 20	s = 0.08 s = 0.01 m = 3 π. μm s = 0.01 π. μm 0% = 0.20 0% = 0.10 m % = 85 π. μm 50 - 40 - 30 - 20 - 10 n.rms~0.01	0 10 20 3C	42% in 010 π, μm 93% in 060 π, μm 100% in 120 π, μm 100% in 200 π, μm ogy = 4.0 mm ogy = 4.0 m		
Ion species	Method	Supporting	IS E + V k	FC01	FC03	RFQ entrance	Transmission	Delivering
		Gas	Ext. voltage [kV]	(15) [eµA]	[eµA]	KMS emittance $(\pi.mm.mard)$	[FC03/FC01]	time [Hrs]
⁴⁰ Ca ¹³⁺	⁴⁰ CaO+Al	¹⁶ O ₂	30.8	40-60	35-50	εx=0.12, εy=0.05	85~90%	1500
⁵⁵ Mn ¹⁷⁺	⁵⁵ Mn	$^{14}N_{2}$	32.4	40-60	35-50	£x=0.08, £y=0.06	85~90%	428
⁵⁴ Cr ¹⁷⁺	⁵⁴ Cr	¹⁴ N ₂	31.8	40-60	35-50	£x=0.08, £y=0.06	85~90%	1183
⁴⁸ Ca ¹⁴⁺	⁴⁸ CaO+Al	¹⁶ O ₂	34.3	10-40	10-35	£x=0.09, £y=0.08	85~90%	~600

Beam quality control:

- Stable ECR plasma
- Optimum beam line alignment with the ion source
- Proper beam collimation

Low Energy high-intensity heavy ion Accelerator Facility: LEAF

Acceleration of high intensity heavy ion beams by LEAF

Heavy ion beam preliminary results

lon source: 78 eµA

ε_{x,y} =0.13, 0.15 π.mm.mrad

Copyright © Beam Feedback Group

Inter

After collimation:0.548 emA

Acceleration of high intensity heavy ion beams by LEAF

Heavy ion beam preliminary results

Perspectives in ECRIS development: intensity

The next generation heavy ion accelerators demand high intensity beam

Perspectives in ECRIS development: quality

Production of 547 eµA U³⁵⁺ by SECRAL II

- Beam quality not promising!
- How to realize efficient injection to downstream accelerators?

Perspectives in ECRIS development: efficiency

G. Adamian, N. Antonenko, A. Bezbakh, and R. Jolos, Physics of Particles and Nuclei, Vol. 47, No. 3, pp. 387–455 (2016)

20~50 pµA highly charged ion beams
Cost efficiency of rare isotopes
Efficient coupling and acceleration

Summary

- Technical advancement with ECR ion sources have enabled significant improvement in accelerators performance at IMP
- Beam intensity and quality both important in high intensity beam acceleration
 - ✓ Beam intensity determines the final intensity
 - $\checkmark\,$ Beam quality determines the acceleration efficiency
 - ✓ Intensity + quality determines the quality of accelerated beams
- For next generation heavy ion accelerators, more critical challenges are foreseen

We appreciate the great support of the accelerator teams at IMP !!

