Inverse Stability Problem in Beam Dynamics

> Alexey Burov Fermilab

HB Workshop, 10/10/2023 CERN

Æв

Inverse Stability Problem in Beam Dynamics

PHYSICAL REVIEW ACCELERATORS AND BEAMS							
Hi	ghlights	Recent	Accepted	Special Editions	Authors	Referees	Sponsors
Open Access							
	Inverse stability problem in beam dynamics						
	Alexey Burov Phys. Rev. Accel. Beams 26 , 082801 – Published 17 August 2023						

HB Workshop, 10/10/2023 CERN

1879-1955

How a simplest unified description for gravity and inertia could look like? 1907–1915

1879-1955

Inverse

How a simplest unified description for gravity and inertia could look like? 1907–1915

1879-1955

Inverse

How a simplest unified description for gravity and inertia could look like? 1907–1915

What could be a fate of the Universe, according to GR? 1922–1924

1888-1925

1879-1955

Inverse

How a simplest unified description for gravity and inertia could look like? 1907–1915

Direct

What could be a fate of the Universe, according to GR? 1922–1924

1888-1925

$$\dot{a}_k + i\Delta\omega_k a_k = -ig\bar{a}$$

$$\dot{a}_k + i\Delta\omega_k a_k = -ig\bar{a}$$

$$a_k \propto \exp(-i\nu t)$$

$$\dot{a}_k + i\Delta\omega_k a_k = -igar{a}$$

 $a_k \propto \exp(-i
u t)$
 $a_k = rac{g}{
u - \Delta\omega_k}ar{a}$

$$\dot{a}_k + i\Delta\omega_k a_k = -igar{a}$$

 $a_k \propto \exp(-i
u t)$
 $a_k = rac{g}{
u - \Delta\omega_k}ar{a}$

$$\frac{g}{N}\sum_k \frac{1}{\nu-\Delta\omega_k} = 1$$

11

$$\dot{a}_k + i\Delta\omega_k a_k = -igar{a}$$

 $a_k \propto \exp(-i
u t)$
 $a_k = rac{g}{
u - \Delta\omega_k}ar{a}$

$$\frac{g}{N}\sum_k \frac{1}{\nu - \Delta \omega_k} = 1$$

$$-\left[\int \int \mathrm{d}J_x \mathrm{d}J_y \frac{J_x \frac{\partial F}{\partial J_x}}{\nu - \Delta \omega(J_x, J_y) + io}\right]^{-1} = g$$

1D, octupoles, Gaussian

alien nonlinearity $\Delta\omega(J_x, J_y) = kJ_y \longrightarrow \left[\int dJ_y \frac{F_y(J_y)}{\nu - J_y + io} \right]^{-1} = g$

1D, octupoles, Gaussian

alien nonlinearity $\Delta\omega(J_x, J_y) = kJ_y \longrightarrow \left[\int dJ_y \frac{F_y(J_y)}{\nu - J_y + io} \right]^{-1} = g$

own nonlinearity

$$\Delta\omega(J_x,J_y) \,=\, k J_x \quad - \quad$$

$$F_{y} \to -J_{x} \frac{\partial F_{x}}{\partial J_{x}}$$

Hereward rule

AB

1D, octupoles, Gaussian

Direct and Inverse Stability Problems

Direct problem: $F(J) \rightarrow V(g')$

Inverse problem: $V(g') \rightarrow F(J)$

Direct and Inverse Stability Problems

Direct problem: $F(J) \rightarrow V(\overline{g'})$

Inverse problem: $V(g') \rightarrow F(J)$; a pair of nonlinear integral equations.

PHYSICAL REVIEW LETTERS 126, 164801 (2021)

estion

Proof-of-Principle Direct Measurement of Landau Damping Strength at the Large Hadron Collider with an Antidamper

S. A. Antipov⁽⁰⁾,^{1,2,*} D. Amorim⁽⁰⁾,^{1,3} N. Biancacci,¹ X. Buffat,¹ E. Métral⁽⁰⁾,¹ N. Mounet,¹ A. Oeftiger⁽⁰⁾,^{1,4} and D. Valuch⁽⁰⁾

AB

Tails: easy

$$\int \mathrm{d}J_y \frac{F_y(J_y)}{\nu - J_y + io} \simeq \frac{1}{\nu} - \pi i F_y(\nu)$$

$$\Re g \simeq \nu; \ \Im g \simeq \pi \nu^2 F_y(\nu)$$

$$F_y(
u) \simeq rac{\Im g(
u)}{\pi
u^2}$$

Core: fitting approach

FIG. 2. Aspect ratio A of 1D stability diagram, the alien case, versus the power n of the binomial distribution function $\propto (1 - J/J_0)^n$, $nJ_0 > 0$. Note that $\lim_{n \to -2} A = \infty$. The dashed line marks the asymptote, $F(J) = J_0^{-1} e^{-J/J_0}, J_0 > 0.$

Core: iterative 4-leg walk

- 1. Compute integrals with your initial guess F(J);
- 2. With that, make tables g'(v); g''(v);
- 3. Update your guess as $F(v) = -\pi^{-1}\Im g^{-1}(v)$;
- 4. Normalize the updated F(J) and go back to 1.

Convergency Limitation

FIG. 4. An example of the iteration convergence for the alien case, $\nu_{\rm min} = 0.7$. Here "true" means the distribution responsible for the "measured diagram"; "0" means the initial guess of the distribution, while "1" and "2" stand for the output distributions after the first and second four-leg moves of the algorithm. The latter is clearly very fast, but it becomes unstable at small actions, $J \leq 0.5$, for a slightly smaller border $\nu_{\rm min}$.

ÆВ

2D case $\Delta \omega(J_x, J_y) = k_x J_x - k_y J_y$

48

FIG. 7. Vaccaro diagrams calculated for a Gaussian bunch at the LHC top energy for 550A of the octupole current, yielding $k_x = 1.0 \cdot 10^{-4}$, $k_y = 0.7 \cdot 10^{-4}$ for the normalized rms emittances 2.5mm·mrad; for more details see Ref. [5]. Gaussian normalized rms emittances for each curve are shown.

Positive tune shifts mostly correspond to *x*, negative — to *y*. The problem is effectively factorized, reducing to 1D case.

Chromaticity effects

If $|g| \ll \omega_s$ then the gain is distributed between the headtail modes:

$$g \rightarrow g_l = g \ K_l(\zeta)$$
 with ζ = rms HT phase

 $K_l(\zeta) = \exp(-\zeta^2) \mathrm{I}_l(\zeta^2)$ for the longitudinally Gaussian case

 $K_l = \int_0^\infty {
m J}_l^2(\zeta r) f(r) r {
m d} r$ in general

$$\sum_{l=-\infty}^{\infty} K_l = 1$$

If $|g| \gg \omega_s$, $|\zeta|\omega_s$, the single rigid–bunch mode is formed, taking the entire gain.

Аt

Many thanks!