Inverse Stability Problem in Beam Dynamics

> Alexey Burov Fermilab

HB Workshop, 10/10/2023 CERN

AB

Inverse Stability Problem in Beam Dynamics

DHVSICAL DEVIEW ACCELEDATODS AND REAMS

HB Workshop, 10/10/2023 CERN

1879-1955

How a simplest unified description for gravity and inertia could look like? 1907-1915

1879-1955

Inverse

How a simplest unified description for gravity and inertia could look like? 1907-1915

1879-1955 1888-1925

Inverse

How a simplest unified description for gravity and inertia could look like? 1907-1915

What could be a fate of the Universe, according to GR? 1922-1924

Inverse

How a simplest unified description for gravity and inertia could look like? 1907-1915

Direct

What could be a fate of the Universe, according to GR? 1922-1924

1879-1955 1888-1925

$$
\dot{a}_k+i\Delta\omega_k a_k=-ig\bar{a}
$$

$$
\dot{a}_k + i\Delta\omega_k a_k = -ig\bar{a}
$$

$$
a_k \propto \exp(-i\nu t)
$$

$$
\dot{a}_k + i\Delta\omega_k a_k = -ig\bar{a}
$$
\n
$$
\frac{a_k \propto \exp(-i\nu t)}{a_k = \frac{g}{\nu - \Delta\omega_k}\bar{a}}
$$

$$
\dot{a}_k + i\Delta\omega_k a_k = -ig\bar{a}
$$
\n
$$
a_k \propto \exp(-i\nu t)
$$
\n
$$
a_k = \frac{g}{\nu - \Delta\omega_k}\bar{a}
$$

$$
\left| \frac{g}{N} \sum_{k} \frac{1}{\nu - \Delta \omega_k} = 1 \right|
$$

$$
\dot{a}_k + i\Delta\omega_k a_k = -ig\bar{a}
$$
\n
$$
\frac{a_k \propto \exp(-i\nu t)}{a_k = \frac{g}{\nu - \Delta\omega_k}\bar{a}}
$$

$$
\frac{g}{N} \sum_{k} \frac{1}{\nu - \Delta \omega_k} = 1
$$

$$
-\left[\int\int\mathrm{d}J_x\mathrm{d}J_y\frac{J_x\frac{\partial F}{\partial J_x}}{\nu-\Delta\omega(J_x,J_y)+io}\right]^{-1}=g
$$

1D, octupoles, Gaussian

alien nonlinearity
 $\Delta \omega(J_x,J_y) = kJ_y$ $\qquad \qquad \left[\int \mathrm{d} J_y \frac{F_y(J_y)}{\nu - J_y + i o} \right]^{-1} = g$

1D, octupoles, Gaussian

alien nonlinearity
 $\Delta \omega(J_x,J_y) = kJ_y$ \longrightarrow $\left[\int dJ_y \frac{F_y(J_y)}{\nu - J_y + i o}\right]^{-1} = g$

own nonlinearity

$$
\Delta\omega(J_x,J_y)\,=\,kJ_x\,\equiv
$$

$$
F_y \to -J_x \frac{\partial F_x}{\partial J_x}
$$

Hereward rule

AB,

 14

1D, octupoles, Gaussian

Direct and Inverse Stability Problems

Direct problem: $F(\overline{J}) \to V(\overline{g'})$

Inverse problem: $V(g') \rightarrow F(J)$

Direct and Inverse Stability Problems

Direct problem: $F(I) \rightarrow V(g')$

Inverse problem: $V(g') \rightarrow F(J)$; a pair of nonlinear integral equations.

PHYSICAL REVIEW LETTERS 126, 164801 (2021)

estion

Proof-of-Principle Direct Measurement of Landau Damping Strength at the Large Hadron Collider with an Antidamper

S. A. Antipov \mathbb{D} , ^{1,2,*} D. Amorim \mathbb{D} , ^{1,3} N. Biancacci, ¹ X. Buffat, ¹ E. Métral \mathbb{D} , N. Mounet,¹ A. Oeftiger[®],^{1,4} and D. Valuch^{®1} and $\mathcal{A}\mathcal{B}$ Tails: easy

$$
\left|\int \mathrm{d} J_y \frac{F_y(J_y)}{\nu - J_y + i o} \simeq \frac{1}{\nu} - \pi i \, F_y(\nu) \right|
$$

$$
\Re g \simeq \nu; \ \Im g \simeq \pi \nu^2 F_y(\nu)
$$

$$
F_y(\nu) \simeq \frac{\Im g(\nu)}{\pi \nu^2}
$$

Core: fitting approach

FIG. 2. Aspect ratio A of 1D stability diagram, the alien case, versus the power n of the binomial distribution function $\propto (1-J/J_0)^n$, $nJ_0 > 0$. Note that $\lim_{n \to -2} A = \infty$. The dashed line marks the asymptote, $F(J) = J_0^{-1}e^{-J/J_0}$, $J_0 > 0$.

Core: iterative *4-leg walk*

- 1. Compute integrals with your initial guess $F(J)$;
- 2. With that, make tables $g'(\nu)$; $g''(\nu)$;
- 3. Update your guess as $F(v) = -\pi^{-1} \Im g^{-1}(v)$;
- 4. Normalize the updated $F(J)$ and go back to 1.

Convergency Limitation

 $FIG. 4.$ An example of the iteration convergence for the alien case, $\nu_{\rm min} = 0.7$. Here "true" means the distribution responsible for the "measured diagram"; "0" means the initial guess of the distribution, while "1" and "2" stand for the output distributions after the first and second four-leg moves of the algorithm. The latter is clearly very fast, but it becomes unstable at small actions, $J \lesssim 0.5$, for a slightly smaller border ν_{\min} .

2D case $\Delta \omega (J_x, J_y) = k_x J_x - k_y J_y$

FIG. 7. Vaccaro diagrams calculated for a Gaussian bunch at the LHC top energy for 550A of the octupole current, yielding $k_x = 1.0 \cdot 10^{-4}$, $k_y = 0.7 \cdot 10^{-4}$ for the normalized rms emittances 2.5 mm·mrad; for more details see Ref. $[5]$. Gaussian normalized rms emittances for each curve are shown.

Positive tune shifts mostly correspond to *x*, negative — to *y*. The problem is effectively factorized, reducing to 1D case.

Chromaticity effects

If $|g| \ll \omega_{s}$ then the gain is distributed between the headtail modes:

$$
g \to g_l = g K_l(\zeta) \qquad \text{with } \zeta = \text{rms HT phase}
$$

 $f(K_l(\zeta) = \exp(-\zeta^2) I_l(\zeta^2)$ for the longitudinally Gaussian case

 $K_l = \int_0^\infty J_l^2(\zeta r) f(r) r dr$ in general

$$
\sum_{l=-\infty}^{\infty} K_l = 1
$$

If $|g| \gg \omega_{s}$, $|\zeta| \omega_{s}$, the single rigid-bunch mode is formed, taking the entire gain.

Many thanks!