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Schottky signals
Time domain Frequency domain
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- Fourier transform of a Dirac Comb is a Dirac Comb
Synchronous

particle arrival time

frequency



Schottky signals
Time domain Frequency domain
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amplitude frequency phase

oscillating particle arrival time Jacobi - Angers expansion,
aka frequency modulation

p=0

p=1

p=2

p=...



Schottky signals
Time domain Frequency domain
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Additional terms described with: ,

amplitude frequency phase

Identical sidebands for zero chromaticity



Schottky signals
Time domain Frequency domain
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random phase

random phase

Power of central satelites proportional to the longitudinal
form factor:



Schottky signals
Time domain Frequency domain
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Power of central sattelites proportional to the longitudinal
form factor:

which vanishes at high frequencies:



Schottky signals
Time domain Frequency domain
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Transverse pickup is sensitive only to transverse Schottky component.
Assuming that common mode rejection is perfect...



Beam parameters in Schottky signals
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fs: synchrotron frequency

Distance between two consecutive Bessel lines

Synchroton frequency



Beam parameters in Schottky signals
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2 Q frev

Distance between the centers of two sidebands.

Also valid for non-zero chromaticity.

Correction may be required for non-negligible octupole current.

Betatron tune



Beam parameters in Schottky signals
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Chromaticity

In certain conditions +/- signs flip, see
K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

: RMS width of upper/lower sideband



Schottky signals: assumptions

Synchrotron and betatron motion
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Synchrotron motion – harmonic, with amplitude
dependent frequency:

Betatron motion – harmonic, frequency
changing linearly with momentum:



Schottky signals: assumptions

Synchrotron and betatron motion
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Synchrotron motion – harmonic, with amplitude
dependent frequency:

Betatron motion – harmonic, frequency
changing linearly with momentum:

Theory extensions

Arbitrary wave-form stationary voltage:
• V. Balbecov et al., EPAC’04, p. 791 (2004)

Effect of space charge:
• O. Boine-Frankenheim and V. Kornilov PRAB 12, 114201

Transverse and longitudinal impedance (early):
• C. Lannoy et al., HB'23 THBP47 (today evening!)
• C. Lannoy et al., WEP034, IBIC'23

Much more on unbunched beam...



Schottky signals: assumptions

Synchrotron and betatron motion Uniform distribution of phases;
no "coherent" components
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Synchrotron motion – harmonic, with amplitude
dependent frequency:

Betatron motion – harmonic, frequency
changing linearly with momentum:

Uniform distribution of pj and  implies
PSD proportional to the number of particles N.
a

Otherwise the power can be proportional to N2.
a

Coherence is most pronounced in central 
satellites, at higher order p it smears out.



Schottky signals: assumptions

Synchrotron and betatron motion Uniform distribution of phases;
no "coherent" components
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Synchrotron motion – harmonic, with amplitude
dependent frequency:

Betatron motion – harmonic, frequency
changing linearly with momentum:

Coherence example: 
longitudinal blowup

Uniform distribution of pj and        implies
PSD proportional to the number of particles N.
a

Otherwise the power can be proportional to N2.
a

Coherence is most pronounced in central 
satellites, at higher order p it smears out.



Schottky signals: assumptions

Synchrotron and betatron motion Sufficiently long time averagingUniform distribution of phases;
no "coherent" components
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Synchrotron motion – harmonic, with amplitude
dependent frequency:

Betatron motion – harmonic, frequency
changing linearly with momentum:

The theory predicts only the expected, 
ensemble averaged spectrum. Time averaging
required to have a correspondence.
f

Analyzed LHC spectra are averaged for 100 s.

See C. Lannoy et al., WEP035, IBIC'23

Uniform distribution of pj and  implies
PSD proportional to the number of particles N.
a

Otherwise the power can be proportional to N2.
a

Coherence is most pronounced in central 
satellites, at higher order p it smears out.



Equivalence of longitudinal characteristics
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From the theory of mathematical pendulum:

From probabilistic principles (or Abel transform):



Matrix form of Schottky spectra
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Mathematically, incoherent Schottky spectra are given 
as a function of:

• Synchrotron amplitude distribution - at least 2 parameters

• Nominal synchrotron frequency - 1 parameter

And:
• Betatron tune - 1 parameter

• Chromaticity - 1 parameter

Longitudinal: Transverse:



Matrix form of Schottky spectra
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Mathematically, incoherent Schottky spectra are given 
as a function of:

• Synchrotron amplitude distribution - at least 2 parameters

• Nominal synchrotron frequency - 1 parameter

And:
• Betatron tune - 1 parameter

• Chromaticity - 1 parameter

For a given set of parameters multiparticle spectrum can be calculated 
with a simple matrix transform.

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803
K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801



Matrix form of Schottky spectra
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Mathematically, incoherent Schottky spectra are given 
as a function of:

• Synchrotron amplitude distribution - at least 2 parameters

• Nominal synchrotron frequency - 1 parameter

And:
• Betatron tune - 1 parameter

• Chromaticity - 1 parameter

For a given set of parameters multiparticle spectrum can be calculated 
with a simple matrix transform.

Use case 1: fast Schottky spectra simulation.

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803
K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801



Matrix form of Schottky spectra
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Mathematically, incoherent Schottky spectra are given 
as a function of:

• Synchrotron amplitude distribution - at least 2 parameters

• Nominal synchrotron frequency - 1 parameter

And:
• Betatron tune - 1 parameter

• Chromaticity - 1 parameter

For a given set of parameters multiparticle spectrum can be calculated 
with a simple matrix transform.

Use case 1: fast Schottky spectra simulation
h

Use case 2 (spectral fitting): given an experimentally
measured spectrum, true parameters would minimize the 
cost function:

h

Minimizing routines iteratively simulate Schottky spectra 
and compare them with the measurement. Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803

K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801



Matrix form: excluding frequency bins
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Fitting procedure also allows to exclude the spectral regions with undesired components.



LHC Schottky Monitor
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• One system for two particle species: protons and Pb82+ ions, 
one device per beam and per plane

p+ Pb82+

Nparticles
(per bunch)

1011 108

Bunch length (4σ) 1-1.4 ns

Normalized
transverse emittance 1.5-2.5 μm

Energy Inj/Flattop
(per nucleon)

0.45 - 6.8 
TeV

0.18 - 2.6 
TeV

Typical LHC beam parameters:



LHC Schottky Monitor
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• One system for two particle species: protons and Pb82+ ions, 
one device per beam and per plane

• Pair of slotted waveguides, probing beam field at 4.81 GHz, 
followed by filtering and down mixing to 11.2 kHz

p+ Pb82+

Nparticles
(per bunch)

1011 108

Bunch length (4σ) 1-1.4 ns

Normalized
transverse emittance 1.5-2.5 μm

Energy Inj/Flattop
(per nucleon)

0.45 - 6.8 
TeV

0.18 - 2.6 
TeV

Typical LHC beam parameters:

4.81 GHz = 427725 frevDetails on the LHC Schottky system in
M. Betz et al., NIM, vol. 874, pp 113-126, 2017



LHC Schottky Monitor
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• One system for two particle species: protons and Pb82+ ions, 
one device per beam and per plane

• Pair of slotted waveguides, probing beam field at 4.81 GHz, 
followed by filtering and down mixing to 11.2 kHz

• Gating system enables observation of single bunches

p+ Pb82+

Nparticles
(per bunch)

1011 108

Bunch length (4σ) 1-1.4 ns

Normalized
transverse emittance 1.5-2.5 μm

Energy Inj/Flattop
(per nucleon)

0.45 - 6.8 
TeV

0.18 - 2.6 
TeV

Typical LHC beam parameters:

4.81 GHz = 427725 frevDetails on the LHC Schottky system in
M. Betz et al., NIM, vol. 874, pp 113-126, 2017



LHC Schottky Monitor
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• One system for two particle species: protons and Pb82+ ions, 
one device per beam and per plane

• Pair of slotted waveguides, probing beam field at 4.81 GHz, 
followed by filtering and down mixing to 11.2 kHz

• Gating system enables observation of single bunches
• The only instrument with the potential of measuring the 

chromaticity in the LHC in a non-invasive way

p+ Pb82+

Nparticles
(per bunch)

1011 108

Bunch length (4σ) 1-1.4 ns

Normalized
transverse emittance 1.5-2.5 μm

Energy Inj/Flattop
(per nucleon)

0.45 - 6.8 
TeV

0.18 - 2.6 
TeV

Typical LHC beam parameters:

4.81 GHz = 427725 frevDetails of the LHC Schottky system in
M. Betz et al., NIM, vol. 874, pp 113-126, 2017
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I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

LHC Schottky Spectra
(upper transverse sideband)
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LHC Schottky Spectra
(upper transverse sideband)

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used
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LHC Schottky Spectra
(upper transverse sideband)

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used
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LHC Schottky Spectra
(upper transverse sideband)

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used
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LHC Schottky Spectra
(upper transverse sideband)

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used on averaged spectra, but 
spectograms are easy to read
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LHC Schottky Spectra
(upper transverse sideband)

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used on averaged spectra, but 
spectograms are easy to read
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LHC Schottky Spectra
(upper transverse sideband)

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used on averaged spectra, but 
spectograms are easy to read
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LHC Schottky Spectra
(upper transverse sideband)

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used on averaged spectra, but 
spectograms are easy to read

IV. Effects beyond the potential of present analysis:
• Octupole magnets, betatron coupling, impedance, all intrument

problems

• The theory to analyse such spectra is still to be developed, or
technical difficulties are to be overcome
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LHC Schottky Spectra

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used on averaged spectra, but 
spectograms are easy to read

IV. Effects beyond the potential of present analysis:
• Octupole magnets, betatron coupling, impedance, all intrument

problems

• The theory to analyse such spectra is still to be developed, or
technical difficulties are to be overcome

Ion beam

Proton beam
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Schottky spectra examples

I. Spectra in agreement with the theory:
• Mostly at flat-top energy of ion fills, shorter periods at flat-bottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, invasive beam parameter

mesurements, direct beam interaction with the surroundings

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used on averaged spectra, but 
spectograms are easy to read

IV. Effects beyond the potential of present analysis:
• Octupole magnets, betatron coupling, impedance, all intrument

problems

• The theory to analyse such spectra is still to be developed, or
technical difficulties are to be overcome

Ion beam

Proton beam
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Schottky spectra examples

I. Spectra in agreement with the theory:
• Mostly at flattop energy of ion fills, shorter periods at flatbottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, beam parameter mesurements, 

beam interaction with the surrounding

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used to averaged spectra, but 
spectograms are easy to read

IV. Effects beyond (current) analysis potential:
• Octupole magnets, betatron coupling, impedance, all intrument

problems

• Theory to analyse such spectra is still to be developed, or technical
difficulties are to overcome

Ion beam

Proton beam
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LHC Schottky Spectra

I. Spectra in agreement with the theory:
• Mostly at flattop energy of ion fills, shorter periods at flatbottom

• Easy to analyse: just use the theory

II. Local distortions:
• Caused by residual coherence, beam parameter mesurements, 

beam interaction with the surrounding

• Theory cannot be directly used

III. Transient effects:
• Tune shifts, RF modulation, energy ramp

• Theory cannot be directly used to averaged spectra, but 
spectograms are easy to read

IV. Effects beyond (current) analysis potential:
• Octupole magnets, betatron coupling, impedance, all intrument

problems

• Theory to analyse such spectra is still to be developed, or technical
difficulties are to overcome

Under development

Analysis techniques known
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• The Longitudinal Schottky spectrum is determined by:
• Synchrotron amplitude distribution

• Nominal synchrotron frequency

Extraction of beam parameters: nominal synchrotron frequency



Extraction of beam parameters: nominal synchrotron frequency
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• The Longitudinal Schottky spectrum is determined by:
• Synchrotron amplitude distribution

• Nominal synchrotron frequency

• These parameters can be retrieved by minimizing the cost function:



Extraction of beam parameters: nominal synchrotron frequency
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• The Longitudinal Schottky spectrum is determined by:
• Synchrotron amplitude distribution

• Nominal synchrotron frequency

• These parameters can be retrieved by minimizing the cost function:

• Minimization performed using the Differential Evolution algorithm from SciPy library.

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803



Extraction of beam parameters: longitudinal bunch profile

17 October 2023K. Łasocha | Analysis of the Transverse Schottky Signals in the LHC​ 42

• The Longitudinal Schottky spectrum is determined by:
• Synchrotron amplitude distribution

• Nominal synchrotron frequency

• These parameters can be retrieved by minimizing the cost function:



Extraction of beam parameters: longitudinal bunch profile

17 October 2023K. Łasocha | Analysis of the Transverse Schottky Signals in the LHC​ 43

• The Longitudinal Schottky spectrum is determined by:
• Synchrotron amplitude distribution

• Nominal synchrotron frequency

• These parameters can be retrieved by minimizing the cost function:

• Obtained synchrotron amplitude distribution can be transformed into longitudinal bunch profile



Extraction of beam parameters: longitudinal bunch profile
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• The Longitudinal Schottky spectrum is determined by:
• Synchrotron amplitude distribution

• Nominal synchrotron frequency

• These parameters can be retrieved by minimizing the cost function:

• Obtained synchrotron amplitude distribution can be transformed into longitudinal bunch profile

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803



Extraction of beam parameters: tune & chromaticity
Example: 8 hour long ion collisions in Nov 2022
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Extraction of beam parameters: tune & chromaticity
Example: 8 hour long ion collisions in Nov 2022
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Cost function minimized at the band's axis of symmetry

Betatron tune



Extraction of beam parameters: tune & chromaticity
Example: 8 hour long ion collisions in Nov 2022
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Cost function minimized at the band's axis of symmetry

Chromaticity

Betatron tune

Standard formula relating sidebands width with chromaticity



Extraction of beam parameters: tune & chromaticity
Example: 8 hour long ion collisions in Nov 2022
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Cost function minimized at the band's axis of symmetry

Chromaticity

Betatron tune

Standard formula relating sidebands width with chromaticity



Extraction of beam parameters: tune & chromaticity
Example: Early proton fill in March 2023
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Extraction of beam parameters: tune & chromaticity
Example: Early proton fill in March 2023

17 October 2023K. Łasocha | Analysis of the Transverse Schottky Signals in the LHC​ 50

Chromaticity

Standard formula relating sidebands width with chromaticity



Extraction of beam parameters: tune & chromaticity
Example: Early proton fill in March 2023
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Offset of over 4 units...

Chromaticity

Standard formula relating sidebands width with chromaticity



Extraction of beam parameters: tune & chromaticity
Example: Early proton fill in March 2023
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Extraction of beam parameters: tune & chromaticity
Example: Early proton fill in March 2023
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Only "valid" frequencies taken into sum

Betatron tune



Extraction of beam parameters: tune & chromaticity
Example: Early proton fill in March 2023

17 October 2023K. Łasocha | Analysis of the Transverse Schottky Signals in the LHC​ 54

Only "valid" frequencies taken into sum

Chromaticity

Betatron tune

Nominal synchrotron tune calculated independently,
Cost function minimization using Differential Evolution algorithm.



Extraction of beam parameters: tune & chromaticity
Example: Early proton fill in March 2023
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Only "valid" frequencies taken into sum

Chromaticity

Betatron tune

Nominal synchrotron tune calculated independently,
Cost function minimization using Differential Evolution algorithm.



LHC Schottky online signal analysis pipeline
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Get the distribution of 
synchrotron amplitudes from 

longitudinal bunch profile

Calculate nominal fs based on 
RF voltage and longitudinal 

Schottky spectrum

Determine valid frequency bins:
1) Statistical properties

2) Correlation between planes

Determine chromaticity by 
fitting the transverse 

spectrum
Calculate betatron tune

using MD algorithm

Obtain a Schottky spectrum

Implementation in the final stage of development, planned be in use in the end of 2023

C. Lannoy et al., WEP035, IBIC'23



Instrument & Beam:
• Full automation of Schottky signal analysis, applying both "traditional" estimates and spectral fitting

procedures
• Investigation on the source of coherent component in Schottky spectra: effects of abort gap 

cleaning, orbit feedback, ...

Theory:
• Quantify the effect of octupoles on Schottky spectra, assess their impact on tune and chromaticity

estimates
• Study the modifications of Schottky spectra due to the beam-coupling impedance

Further plans
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See C. Lannoy et al., HB'23 THBP47



Thank you for your attention!

g

RF manipulations, 24.04.2023, LHC Beam 2 Horizontal
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