

Extraction of LHC Beam Parameters from Schottky Signals

Kacper Łasocha, CERN Beam Instrumentation Group 12.10.2023, Geneva, HB'23

Outline

- 1. Theory of Schottky signals of bunched beams
- 2. Schottky signals in the LHC
- 3. Extraction of the beam parameters
 - 1. Synchrotron frequency
 - 2. Longitudinal bunch profiles
 - 3. Betatron tune
 - 4. Chromaticity

4. Summary and future plans

Frequency domain

Power of central satelites proportional to the longitudinal form factor:

$$\mathcal{F}(\omega) = C_{norm} \int_{-\infty}^{\infty} e^{j\omega t} \mathcal{B}(t) dt$$

Frequency domain

Power of central sattelites proportional to the longitudinal form factor:

$$\mathcal{F}(\omega) = C_{norm} \int_{-\infty}^{\infty} e^{j\omega t} \mathcal{B}(t) dt$$

which vanishes at high frequencies:

$$\mathcal{F}(\omega) \xrightarrow[\omega \to \infty]{} 0$$

Transverse pickup is sensitive only to transverse Schottky component. Assuming that common mode rejection is perfect...

Beam parameters in Schottky signals

Synchroton frequency

Distance between two consecutive Bessel lines

Beam parameters in Schottky signals

Betatron tune

Distance between the centers of two sidebands.

Also valid for non-zero chromaticity.

Correction may be required for non-negligible octupole current.

Beam parameters in Schottky signals

Chromaticity

$$Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_{I} \right)$$

 Δf_{\pm} : RMS width of upper/lower sideband

In certain conditions +/- signs flip, see K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

Synchrotron and betatron motion

Synchrotron motion – harmonic, with amplitude dependent frequency:

$$\tau_i(t) = \hat{\tau}_i \sin\left(\Omega_{s_i} t + \varphi_{s_i}\right)$$

$$\Omega_{s_i} = \frac{\pi}{2\mathcal{K}\left[\sin\left(\frac{h\omega_0\widehat{\tau}_i}{2}\right)\right]}\Omega_{s_0}$$

Betatron motion – harmonic, frequency changing linearly with momentum:

$$\begin{aligned} x_i(t) &= \widehat{x_i} \cos \left[Q \omega_0 t + \frac{\widehat{Q_i} \omega_0}{\Omega_{s_i}} \sin \left(\Omega_{s_i} t + \varphi_{s_i} \right) + \varphi_{\beta_i} \right] \\ \widehat{Q_i} &= Q \xi \frac{\widehat{p_i}}{p_0} \end{aligned}$$

Synchrotron and betatron motion

Synchrotron motion – harmonic, with amplitude dependent frequency:

$$\tau_i(t) = \hat{\tau}_i \sin\left(\Omega_{s_i} t + \varphi_{s_i}\right)$$

$$\Omega_{s_i} = \frac{\pi}{2\mathcal{K}\left[\sin\left(\frac{h\omega_0\widehat{\tau}_i}{2}\right)\right]}\Omega_{s_0}$$

Betatron motion – harmonic, frequency changing linearly with momentum:

$$\begin{aligned} x_i(t) &= \widehat{x_i} \cos \left[Q \omega_0 t + \frac{\widehat{Q_i} \omega_0}{\Omega_{s_i}} \sin \left(\Omega_{s_i} t + \varphi_{s_i} \right) + \varphi_{\beta_i} \right] \\ \widehat{Q_i} &= Q \xi \frac{\widehat{p_i}}{p_0} \end{aligned}$$

Theory extensions

Arbitrary wave-form stationary voltage:

• V. Balbecov et al., EPAC'04, p. 791 (2004)

Effect of space charge:

• O. Boine-Frankenheim and V. Kornilov PRAB 12, 114201

Transverse and longitudinal impedance (early):

- C. Lannoy et al., HB'23 THBP47 (today evening!)
- C. Lannoy et al., WEP034, IBIC'23

Much more on unbunched beam...

Synchrotron and betatron motion

Synchrotron motion – harmonic, with amplitude dependent frequency:

 $\tau_i(t) = \hat{\tau}_i \sin\left(\Omega_{s_i} t + \varphi_{s_i}\right)$

 $\Omega_{s_i} = \frac{\pi}{2\mathcal{K}\left[\sin\left(\frac{h\omega_0\widehat{\tau}_i}{2}\right)\right]}\Omega_{s_0}$

Betatron motion – harmonic, frequency changing linearly with momentum:

$$x_{i}(t) = \widehat{x}_{i} \cos \left[Q\omega_{0}t + \frac{\widehat{Q}_{i}\omega_{0}}{\Omega_{s_{i}}} \sin \left(\Omega_{s_{i}}t + \varphi_{s_{i}}\right) + \varphi_{\beta_{i}} \right]$$
$$\widehat{Q}_{i} = Q\xi \frac{\widehat{p}_{i}}{p_{0}}$$

Uniform distribution of phases; no "coherent" components

Uniform distribution of $P\varphi_{s_i}$ and φ_{β_i} implies PSD proportional to the number of particles N.

Otherwise the power can be proportional to N².

Coherence is most pronounced in central satellites, at higher order p it smears out.

Synchrotron and betatron motion

Synchrotron motion – harmonic, with amplitude dependent frequency:

 $\tau_i(t) = \hat{\tau}_i \sin\left(\Omega_{s_i} t + \varphi_{s_i}\right)$

 $\Omega_{s_i} = \frac{\pi}{2\mathcal{K}\left[\sin\left(\frac{h\omega_0\widehat{\tau}_i}{2}\right)\right]}\Omega_{s_0}$

Betatron motion – harmonic, frequency changing linearly with momentum:

$$x_{i}(t) = \widehat{x}_{i} \cos \left[Q\omega_{0}t + \frac{\widehat{Q}_{i}\omega_{0}}{\Omega_{s_{i}}} \sin \left(\Omega_{s_{i}}t + \varphi_{s_{i}}\right) + \varphi_{\beta_{i}} \right]$$
$$\widehat{Q}_{i} = Q\xi \frac{\widehat{p}_{i}}{p_{0}}$$

Uniform distribution of phases; no "coherent" components

Uniform distribution of $P\varphi_{s_i}$ and φ_{β_i} implies PSD proportional to the number of particles N.

Otherwise the power can be proportional to N².

Coherence is most pronounced in central satellites, at higher order p it smears out.

Coherence example: longitudinal blowup

Synchrotron and betatron motion

Synchrotron motion – harmonic, with amplitude dependent frequency:

 $\tau_i(t) = \hat{\tau}_i \sin\left(\Omega_{s_i} t + \varphi_{s_i}\right)$

 $\Omega_{s_i} = \frac{\pi}{2\mathcal{K}\left[\sin\left(\frac{h\omega_0\widehat{\tau}_i}{2}\right)\right]}\Omega_{s_0}$

Betatron motion – harmonic, frequency changing linearly with momentum:

$$x_{i}(t) = \widehat{x}_{i} \cos \left[Q\omega_{0}t + \frac{\widehat{Q}_{i}\omega_{0}}{\Omega_{s_{i}}} \sin \left(\Omega_{s_{i}}t + \varphi_{s_{i}}\right) + \varphi_{\beta_{i}} \right]$$
$$\widehat{Q}_{i} = Q\xi \frac{\widehat{p}_{i}}{p_{0}}$$

Uniform distribution of phases; no "coherent" components

Uniform distribution of $P\varphi_{s_i}$ and φ_{β_i} implies PSD proportional to the number of particles N.

Otherwise the power can be proportional to N².

Coherence is most pronounced in central satellites, at higher order p it smears out.

Sufficiently long time averaging

The theory predicts only the expected, ensemble averaged spectrum. Time averaging required to have a correspondence.

Analyzed LHC spectra are averaged for 100 s.

Equivalence of longitudinal characteristics

From probabilistic principles (or Abel transform):

$$\mathcal{B}(\tau) = \int_{|\tau|}^{\infty} \frac{g_{\widehat{\tau}}(\widehat{\tau})}{\pi\sqrt{\widehat{\tau}^2 - \tau^2}} d\widehat{\tau}$$

From the theory of mathematical pendulum:

$$\Omega_s = \frac{\pi}{2\mathcal{K}[\sin(\frac{h\omega_0\hat{\tau}}{2})]}\Omega_{s_0}$$

Mathematically, incoherent Schottky spectra are given as a function of:

- Synchrotron amplitude distribution at least 2 parameters
- Nominal synchrotron frequency 1 parameter

And:

- Betatron tune 1 parameter
- Chromaticity 1 parameter

Longitudinal:

$$\frac{\omega_0 q}{2\pi} \sum_{n=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} J_p\left(n\omega_0 \widehat{\tau_i}\right) e^{j\left(n\omega_0 t + p\Omega_{s_i} t + p\varphi_{s_i}\right)}$$

Transverse:

$$\sum_{n,p=-\infty}^{\infty} J_p \left(\chi_{\widehat{\tau}_i,n\mp Q_I}^{\pm} \right) e^{j \left(\left[(n \pm Q_F) \omega_0 + p\Omega_{s_i} \right] t + \varphi_{\beta_i} + p \varphi_{s_i} \right)} \\ \chi_{\widehat{\tau}_i,n}^{\pm} = \left(n \widehat{\tau_i} \pm \frac{\widehat{Q_i}}{\Omega_{s_i}} \right) \omega_0 = (n\eta \pm Q\xi) \frac{\omega_0 \widehat{p_i}}{\Omega_{s_i} p_0}$$

Mathematically, incoherent Schottky spectra are given as a function of:

- Synchrotron amplitude distribution at least 2 parameters
- Nominal synchrotron frequency 1 parameter

And:

- Betatron tune 1 parameter
- Chromaticity 1 parameter

For a given set of parameters multiparticle spectrum can be calculated with a simple matrix transform.

$P_T^{\pm}(\omega_1, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_1, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$]	$\widetilde{g}(\widehat{\tau}_1)$		$\left[P_T^{\pm}(\omega_1)\right]$	
$P_T^{\pm}(\omega_2, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_2, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{\tau}_2)$		$P_T^{\pm}(\omega_2)$	
:	۰.	÷		÷	=	:	•
$P_T^{\pm}(\omega_m, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_m, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{\tau_n})$		$P_T^{\pm}(\omega_m)$	
$\mathcal{M}(S)$	$\Omega_{s_0}, Q,$	$Q\xi))$		$\widetilde{\mathcal{A}}$		ŝ	

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803 K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

Mathematically, incoherent Schottky spectra are given as a function of:

- Synchrotron amplitude distribution at least 2 parameters
- Nominal synchrotron frequency 1 parameter

And:

- Betatron tune 1 parameter
- Chromaticity 1 parameter

For a given set of parameters multiparticle spectrum can be calculated with a simple matrix transform.

Use case 1: fast Schottky spectra simulation.

$P_T^{\pm}(\omega_1, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_1, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$]	$\widetilde{g}(\widehat{\tau}_1)$		$\left[P_T^{\pm}(\omega_1)\right]$	
$P_T^{\pm}(\omega_2, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_2, \widehat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{ au_2})$	_	$P_T^{\pm}(\omega_2)$	
÷	۰.	÷		:		÷	
$P_T^{\pm}(\omega_m, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_m, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{\tau_n})$		$P_T^{\pm}(\omega_m)$	
$\mathcal{M}(S)$	$\Omega_{s_0}, Q,$	$Q\xi))$		$\widetilde{\mathcal{A}}$		ŝ	

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803 K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

Mathematically, incoherent Schottky spectra are given as a function of:

- Synchrotron amplitude distribution at least 2 parameters
- Nominal synchrotron frequency 1 parameter

And:

- Betatron tune 1 parameter
- Chromaticity 1 parameter

For a given set of parameters multiparticle spectrum can be calculated with a simple matrix transform.

Use case 1: fast Schottky spectra simulation

Use case 2 (spectral fitting): given an experimentally measured spectrum, true parameters would minimize the cost function:

$$C\left(\Omega_{s_0}, Q, Q\xi, \mathcal{A}\right) = |\mathcal{M}\left(\Omega_{s_0}, Q, Q\xi\right) \cdot \mathcal{A} - [\mathcal{S}_{exp}]|^2$$

Minimizing routines iteratively simulate Schottky spectra and compare them with the measurement.

$P_T^{\pm}(\omega_1, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_1, \widehat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$	$\widetilde{g}(\widehat{\tau_1})$		$\left[P_T^{\pm}(\omega_1)\right]$	
$P_T^{\pm}(\omega_2, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_2, \widehat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$	$\widetilde{g}(\widehat{\tau_2})$	_	$P_T^{\pm}(\omega_2)$	
÷	·	:	÷		÷	
$P_T^{\pm}(\omega_m, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_m, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$	$\widetilde{g}(\widehat{\tau_n})$		$P_T^{\pm}(\omega_m)$,
$\mathcal{M}($	$\Omega_{s_0}, Q,$	$Q\xi))$	$\widetilde{\mathcal{A}}$		ŝ	

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803 K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

Matrix form: excluding frequency bins

Fitting procedure also allows to exclude the spectral regions with undesired components.

 One system for two particle species: protons and Pb⁸²⁺ ions, one device per beam and per plane

Typical LHC beam parameters:

	p+	Pb ⁸²⁺
N _{particles} (per bunch)	10 ¹¹	10 ⁸
Bunch length (4σ)	1-1.	4 ns
Normalized transverse emittance	1.5-2	5 μm
Energy Inj/Flattop (per nucleon)	0.45 - 6.8 TeV	0.18 - 2.6 TeV

- One system for two particle species: protons and Pb⁸²⁺ ions, one device per beam and per plane
- Pair of slotted waveguides, probing beam field at 4.81 GHz, followed by filtering and down mixing to 11.2 kHz

Typical LHC beam parameters:

	p+	Pb ⁸²⁺		
N _{particles} (per bunch)	10 ¹¹	10 ⁸		
Bunch length (4σ)	1-1.4 ns			
Normalized transverse emittance	1.5-2	5 μm		
Energy Inj/Flattop (per nucleon)	0.45 - 6.8 TeV	0.18 - 2.6 TeV		

- One system for two particle species: protons and Pb⁸²⁺ ions, one device per beam and per plane
- Pair of slotted waveguides, probing beam field at 4.81 GHz, followed by filtering and down mixing to 11.2 kHz
- Gating system enables observation of single bunches

Typical LHC beam parameters:

	p+	Pb ⁸²⁺		
N _{particles} (per bunch)	10 ¹¹	10 ⁸		
Bunch length (4σ)	1-1.4 ns			
Normalized transverse emittance	1.5-2	.5 μm		
Energy Inj/Flattop (per nucleon)	0.45 - 6.8 TeV	0.18 - 2.6 TeV		

17 October 2023

- One system for two particle species: protons and Pb⁸²⁺ ions, one device per beam and per plane
- Pair of slotted waveguides, probing beam field at 4.81 GHz, followed by filtering and down mixing to 11.2 kHz
- Gating system enables observation of single bunches
- The only instrument with the potential of measuring the chromaticity in the LHC in a non-invasive way

	p⁺	Pb ⁸²⁺	
N _{particles} (per bunch)	10 ¹¹	10 ⁸	
Bunch length (4σ)	4σ) 1-1.4 ns		
Normalized transverse emittance	1.5-2	5 μm	
Energy Inj/Flattop (per nucleon)	0.45 - 6.8 TeV	0.18 - 2.6 TeV	

17 October 2023

(upper transverse sideband)

CERN

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory

(upper transverse sideband)

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory
- II. Local distortions:

ÉRN

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

(upper transverse sideband)

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory
- II. Local distortions:

ÉRN

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

(upper transverse sideband)

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory
- II. Local distortions:
 - Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
 - Theory cannot be directly used

(upper transverse sideband)

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used on averaged spectra, but spectograms are easy to read

17 October 2023

(upper transverse sideband)

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used on averaged spectra, but spectograms are easy to read

(upper transverse sideband)

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used on averaged spectra, but spectograms are easy to read

(upper transverse sideband)

- I. Spectra in agreement with the theory:
 - Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
 - Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used on averaged spectra, but spectograms are easy to read

IV. Effects beyond the potential of present analysis:

- Octupole magnets, betatron coupling, impedance, all intrument problems
- The theory to analyse such spectra is still to be developed, or technical difficulties are to be overcome

I. Spectra in agreement with the theory:

- Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
- Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used on averaged spectra, but spectograms are easy to read

IV. Effects beyond the potential of present analysis:

- Octupole magnets, betatron coupling, impedance, all intrument problems
- The theory to analyse such spectra is still to be developed, or technical difficulties are to be overcome

lon beam

Proton beam

Schottky spectra examples

I. Spectra in agreement with the theory:

- Mostly at flat-top energy of ion fills, shorter periods at flat-bottom
- Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, invasive beam parameter mesurements, direct beam interaction with the surroundings
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used on averaged spectra, but spectograms are easy to read

IV. Effects beyond the potential of present analysis:

- Octupole magnets, betatron coupling, impedance, all intrument problems
- The theory to analyse such spectra is still to be developed, or technical difficulties are to be overcome

lon beam

Proton beam

Schottky spectra examples

I. Spectra in agreement with the theory:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used to averaged spectra, but spectograms are easy to read

IV. Effects beyond (current) analysis potential:

- Octupole magnets, betatron coupling, impedance, all intrument problems
- Theory to analyse such spectra is still to be developed, or technical difficulties are to overcome

lon beam

Proton beam

saturation, low signal to noise ratio

Analysis techniques known

- Spectra in agreement with the theory:
 - Mostly at flattop energy of ion fills, shorter periods at flatbottom
 - Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

III. Transient effects:

Under development

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used to averaged spectra, but spectograms are easy to read

IV. Effects beyond (current) analysis potential:

- Octupole magnets, betatron coupling, impedance, all intrument problems
- Theory to analyse such spectra is still to be developed, or technical difficulties are to overcome

Extraction of beam parameters: nominal synchrotron frequency

- The Longitudinal Schottky spectrum is determined by:
 - Synchrotron amplitude distribution
 - Nominal synchrotron frequency

CÉRN

Extraction of beam parameters: nominal synchrotron frequency

- The Longitudinal Schottky spectrum is determined by:
 - Synchrotron amplitude distribution
 - Nominal synchrotron frequency
- These parameters can be retrieved by minimizing the cost function:

$$C(\Omega_{s_0}, \mathcal{A}) = |\mathcal{M}(\Omega_{s_0}) \cdot \mathcal{A} - P_{DFT}^{exp}|^2$$

Extraction of beam parameters: nominal synchrotron frequency

- The Longitudinal Schottky spectrum is determined by:
 - Synchrotron amplitude distribution
 - Nominal synchrotron frequency
- These parameters can be retrieved by minimizing the cost function:

$$C(\Omega_{s_0}, \mathcal{A}) = |\mathcal{M}(\Omega_{s_0}) \cdot \mathcal{A} - P_{DFT}^{exp}|^2$$

• Minimization performed using the Differential Evolution algorithm from SciPy library.

Extraction of beam parameters: longitudinal bunch profile

- The Longitudinal Schottky spectrum is determined by:
 - Synchrotron amplitude distribution
 - Nominal synchrotron frequency
- These parameters can be retrieved by minimizing the cost function:

$$C(\Omega_{s_0}, \mathcal{A}) = |\mathcal{M}(\Omega_{s_0}) \cdot \mathcal{A} - P_{DFT}^{exp}|^2$$

Extraction of beam parameters: longitudinal bunch profile

- The Longitudinal Schottky spectrum is determined by:
 - Synchrotron amplitude distribution
 - Nominal synchrotron frequency
- These parameters can be retrieved by minimizing the cost function:

$$C(\Omega_{s_0},\mathcal{A}) = |\mathcal{M}(\Omega_{s_0}) \cdot \mathcal{A} - P_{DFT}^{exp}|^2$$

Obtained synchrotron amplitude distribution can be transformed into longitudinal bunch profile

Extraction of beam parameters: longitudinal bunch profile

- The Longitudinal Schottky spectrum is determined by:
 - Synchrotron amplitude distribution
 - Nominal synchrotron frequency
- These parameters can be retrieved by minimizing the cost function:

$$C(\Omega_{s_0}, \mathcal{A}) = |\mathcal{M}(\Omega_{s_0}) \cdot \mathcal{A} - P_{DFT}^{exp}|^2$$

Obtained synchrotron amplitude distribution can be transformed into longitudinal bunch profile

17 October 2023

Betatron tune $C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$

Cost function minimized at the band's axis of symmetry

Betatron tune $C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$

Cost function minimized at the band's axis of symmetry

Chromaticity

$$Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_I \right)$$

Standard formula relating sidebands width with chromaticity

Betatron tune $C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$

Cost function minimized at the band's axis of symmetry

Chromaticity

$$Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_I \right)$$

Standard formula relating sidebands width with chromaticity

Chromaticity $Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_{I} \right)$

Standard formula relating sidebands width with chromaticity

Chromaticity $Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_{I} \right)$

Standard formula relating sidebands width with chromaticity

Offset of over 4 units...

Betatron tune $C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$ Only "valid" frequencies taken into sum

Only "valid" frequencies taken into sum

Betatron tune $C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$ Only "valid" frequencies taken into sum

Chromaticity

$$C(\mathcal{A}, Q\xi) = |\mathcal{M}(Q\xi) \cdot \mathcal{A} - \mathcal{S}_{exp}|^2$$

Nominal synchrotron tune calculated independently, Cost function minimization using Differential Evolution algorithm.

Betatron tune $C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$ Only "valid" frequencies taken into sum

Chromaticity

$$C(\mathcal{A}, Q\xi) = |\mathcal{M}(Q\xi) \cdot \mathcal{A} - \mathcal{S}_{exp}|^2$$

Nominal synchrotron tune calculated independently, Cost function minimization using Differential Evolution algorithm.

LHC Schottky online signal analysis pipeline

Implementation in the final stage of development, planned be in use in the end of 2023

Further plans

Instrument & Beam:

- Full automation of Schottky signal analysis, applying both "traditional" estimates and spectral fitting procedures
- Investigation on the source of coherent component in Schottky spectra: effects of abort gap cleaning, orbit feedback, ...

Theory:

- Quantify the effect of octupoles on Schottky spectra, assess their impact on tune and chromaticity estimates
- Study the modifications of Schottky spectra due to the beam-coupling impedance

See C. Lannoy et al., HB'23 THBP47

Thank you for your attention!

112004	MANANA A	

RF manipulations, 24.04.2023, LHC Beam 2 Horizontal

