

Non-Invasive Transverse Profile Measurement Methods

Randy Thurman-Keup

68th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams

October 9-13, 2023

Introduction

- Non-Invasive
 - No significant alteration of the beam phase space or intensity
 - No damage to the instrument
- No synchrotron radiation (only exists in LHC now?)
- Interaction of the beam with a gas
 - Either via ionization or fluorescence
 - Using either residual or injected gas
- Electron/ion probe beams
- Laser-induced photoionization (unique for H-)

12/10/2023

Residual Gas Ionization

- Utilize beam-induced ionization of residual gas in the beampipe ${\rm N}_2 + {\rm p} \rightarrow {\rm N}_2^+ + e^- + {\rm p}$

Residual Gas Ionization

- Use an electric field to separate the ionization products
 - Typically in a range of 100 300 kV/m

Typically called an Ionization Profile Monitor, IPM (but also RGM, BGI, ...)

- Want to preserve ion/electron starting positions during trip to detector
 - Trajectories may be impacted by space charge of the beam V. Shiltsev, NIMA 986 (2021) 164744
- Can use a magnetic field parallel to electric field to constrain electron trajectories if collecting electrons

12/10/2023

Gain of 1000 – 10,000

12/10/2023

Better **spatial** resolution

Better time resolution

IPM – Signal collection

- Signal is typically small A few per bunch to hundreds per bunch
 - Requires low-noise amplification or low-noise data acquisition
- Microchannel Plate → Phosphor Screen → Imaging System⁻
- Phosphor Screen \rightarrow Intensified Imaging System
 - Microchannel plates are outside the vacuum
- Microchannel Plate → Copper Strips or Wires → Data Acquisition

Outgoing Electron Shower

R. Thurman-Keup | THC2I1: Non-Invasive Transverse Profile Measurement Methods

Pixel readout chin

Pixel readout chip

IPM – Signal collection

12/10/2023

IPM – Signal collection

MCP / Conductive Strips

All electron collection with magnet

FNAL 2.5 mm MI/RR

12/10/2023

K. Satou, 3rd IPM Workshop sigma² [mm²] T. Yasui et al., PASJ2018 60

15

10

20 turn

JPARC MR

R. Connolly et al., BNL-102439-2013-TECH

Microchannel Plate Features

- Short-term drop in gain for large current draw
 - $\mathcal{O}(1 \text{ ms})$ charging time
- Gradual drop in gain due to aging
 - Function of current drawn from the MCP (>1 C/cm²)
- Fast initial gain drop due to 'scrubbing'
 - Adsorbed gasses must be removed after exposure to air

K. Satou, 3rd IPM Workshop

Calibrate gain: UV lamp, step the beam

12/10/2023

Gating the IPM

• Include an additional electrode in the path of the detected particles

Ionization electrons

IPM – Signal collection

Pixel Detector

Electron collection with magnet

Timepix3 characteristics:

Performance limitations:

Detector resolution = 55 µm

• Dead time per pixel > 475 ns

Time resolution = 1.56 ns

CERN PS - Timepix

Multi-turn extraction showing transverse beamlets

F. Benedetti et al. ANIMMA2019

ESS Test with ions

Test of Timepix with H_2^+ ions Very sensitive to energy

S. Levasseur et al., IBIC2021

Before

After filtering

filtering

J. Storey, 20th Anniversary Timepix Symposium; BI Day 2017

Beam loss

R. Thurman-Keup | THC2I1: Non-Invasive Transverse Profile Measurement Methods

12/10/2023

10

IPM – Ionization Remnants

• For electron detection, ions must not produce secondary electrons

12/10/2023

‡Fermilab

IPM Examples

12/10/2023

Residual Gas Fluorescence

• Similar to beam-induced ionization, except less energy transferred

$$N_2 + p \rightarrow (N_2^+)^* + e^- + p \rightarrow N_2^+ + \gamma + e^- + p$$

 $Xe + p \rightarrow (Xe)^* + p \rightarrow Xe + \gamma + p$

- Movement of excited molecule before emission
 - Determined by lifetime of excited state and energy of molecule
- Changes origination position of beam interaction
 Y = Relative

 $\tau(N_2) = 60 \text{ ns } \tau(Xe) = 6 \text{ ns}$ Distance from *kT* motion $N_2 = 25 \mu \text{m}$ Xe < 1 μm

12/10/2023

Residual Gas Fluorescence

- Behavior with beam energy shown to follow dE/dx expections
- Signal relative to ionizations
 - Number of primary ionizations for N₂
 - ~20 in 2 cm of atmospheric pressure F. Sauli, CERN 77-09
 - Number of photons from N₂
 - ~1.2 in 2 cm of atmospheric pressure M. Friend, 3rd IPM Workshop M. Plum et al., NIMA 492, 2002
 - ~ 16 times fewer photons than ion pairs
 - 4π angular collection of ions
 - 45-degree half-angle cone is only $\sim \pi/2$
 - Total is factor of 100 fewer photons
- Use gas injection to offset small number of photons

Residual Gas Fluorescence

GSI

F. Becker et al., DIPAC2007

Need significant increase in pressure \rightarrow simulations with Molflow

Molflow: Monte Carlo simulation for vacuum system

Beam X Position (mm)

12/10/2023

Gas Jets

• Sheet of high velocity gas molecules created instead of using residual gas

12/10/2023

JPARC

LINAC

‡ Fermilab

Gas Jets

Collects ions

J. Kamiya, 3rd IPM Workshop

Sheet generating chamber No skimmers

Gas sheet image

Diameter of Phospher screen (used for scale calibration) Beam cross-sectional shape (interaction with gas sheet)

Beam trace (interaction with residual gas)

12/10/2023

HB 2023

‡Fermilab

12/10/2023

Deflection of Probe Beam

 Determine the profile of a hadron beam by using the deflection of a probe beam

‡ Fermilab

Electron Beam Profiler

Electron(Ion) Beam Profiler

FNAL MI

~10 ns bunch length

Pixels

R. Thurman-Keup, IBIC2023 12/10/2023

- Discrete steps of electron beam
 - 25 ns sweep time too long
 - Electrons move through too rapidly and see the gaps between bunches
- Use low energy ions
 - Slow ion deflection averages bunch structure

J. Bosser et al., NIMA 484 (2002)

Sheet beam of Xe⁺ @ 2.72 keV

CERN SPS

Photoionization of H⁻ by Laser

• A photon with enough energy (1064 nm is sufficient) can ionize the 'loose' electron on the H⁻ ion which has a binding energy of 0.75 eV

 $\mathrm{H}^- + \gamma \rightarrow \mathrm{H}^0 + e^-$

- Electron is collected via magnetic field and detector
- Laser is stepped through the beam to obtain profile
- Additionally, H⁰ can be detected downstream to obtain divergence and thus emittance
 - Beam must be bent by magnet to isolate the H⁰
- For laser pulse lengths < bunch length, can measure bunch length

Photoionization of H⁻ by Laser

Number of ionizations for laser perpendicular to beam

Wavelength (nm)

Data from Broad and Reinhardt, Phys . Rev. A14 (1976) Bunch density Laser density

 $dn = c\sigma_l(\tilde{\lambda}_l)I_lI_b dtdxdydz \qquad \tilde{\lambda}_l = \lambda_l\sqrt{1-\beta^2}$

ity Lorentz-transformed laser wavelength

- For a 30 mJ, 10 ns laser pulse on a 30 ps bunch with 1 x 10⁸ ions
 - Expect a few percent of the beam to be ionized $\rightarrow 1 \text{ pC of H}^0/e^-$ pairs
 - Laser is usually 1064 nm due to commercial availability
- Called a Laserwire

Horizontal scan

Photoionization of H⁻ by Laser

12/10/2023

‡Fermilab

Future?

- Pixel Detectors (already here!!)
- Quantum gas jets!!
 - N. Kumar, IPAC2021
 - Can make pencil beams

Atomic Sieve

Further Reading

9th DITANET Workshop, CERN, 2013, <u>https://indico.cern.ch/event/229959/</u> 1st IPM Workshop, CERN, 2016, <u>https://indico.cern.ch/event/491615</u> 2nd IPM Workshop, GSI, 2017, <u>https://indico.gsi.de/event/5366/</u> 3rd IPM Workshop, JPARC, 2018, <u>https://conference-indico.kek.jp/event/55/</u> CERN BGI(IPM) website, <u>https://bgi.web.cern.ch/</u>

P. Forck, IPAC2010, TUZMH01 J. Marroncle et al., IBIC2023, WEP001 R. Connolly et al., BNL-102439-2013-TECH K. Satou, IBIC2019, TUPP020 S. Levasseur et al., IBIC2021, TUOA05 F. Benedetti et al., ANIMMA2019 K. Satou, IBIC2017, WE3AB2 J. Storey, IBIC2017, WE2AB5 R. Thurman-Keup, IBIC2017, WE3AB3 V. Shiltsev, NIMA 986 (2021) 164744 F. Becker et al., DIPAC2009, TUPB02 M. Plum et al., NIMA 492, 2002 12/10/2023

F. Becker et al., DIPAC2007, MOO3A02 S. Cao et al., IBIC2020, WEPP34 M. Putignano and C.P. Welsch, NIMA 667 (2012) N. Kumar et al., Physica Medica 73 (2020) 173–178 O. Sedlacek, IBIC2023, WE3I01 J. Bosser et al., NIMA 484 (2002) W. Blokland and S. Cousineau, NAPAC2011, WEOCN2 R. Thurman-Keup et al., IBIC2023, WEP023 and WEP025 Y. Liu, NAPAC2011, WEOCN1 T. Hofmann, Phys. Rev. ST Accel. Beams 18, 122801 V. Scarpine, IBIC2021, TUPP25 N. Kumar, IPAC2021, TUPAB280 Y. Liu, IBIC2023, MO2I01