

SNS upgrade and power ramp-up

Fulvia Pilat

Oak Ridge National Laboratory

Division Director for Research Accelerator Division (RAD)

SNS Operations Manager

HB2023 – October 9-13, 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- SNS overview
- Proton Power Upgrade (PPU)
- SNS operational performance
- Recent power ramp up to 1.7 MW
- Plans to reach 2MW and beyond
- New scientific missions and applications
- Accelerator R&D highlights
- Conclusion

Accelerator overview: how we generate protons

CAK RIDGE National Laboratory

21-G02146/gim

Target systems overview: how we generate neutrons

- Target module and mercury systems (Hg Loop)
- Inner reflector plug (IRP)
- Cryogenic moderator system (CMS)
- Proton beam window (PBW)
- Shutters, core vessel inserts
- Target utilities

SNS instrument overview: How we use neutrons

- 18 operating neutron scattering instruments
- 1 under construction
- 2 fundamental physics experiments:
 - BL-13/EDM Coherent- neutrinos

Proton Power Upgrade project scope

- Upgrade the SNS accelerator beam power capability from 1.4 MW to 2.8 MW
 - 30% beam energy increase: 1.0 GeV → 1.3 GeV
 - 50% beam current increase: (at least 46 mA from source, with 90% RFQ transmission)
- Includes scope across much of the neutron source

Recent PPU achievements

Power Ramp-up Plan

CAK RIDGE National Laboratory

8

SNS has operated reliably at 1.4 MW and has started the power ramp-up to 2.8MW !

The SNS is the highest power SRF linac world-wide

Successfully operated at **1.7MW** this year

Capable of 2.8-3 MW

SNS doubling in power opens opportunities to leverage the facility potential for new scientific missions and applications, in addition to neutron scattering

1.7 MW

>

SNS has maintained successful operations through COVID and during the PPU project execution

Demonstrated Routine 1.7 MW Operations

- Early 2023: production beam power reached 1.55 MW at 1050 MeV though with minimal beam current margin
 - Turned up the **RFQ** field to increase beam current but limited the increase due to worry about potential RFQ seal damage
 - Installed PPU cryomodules enabling 1100 MeV beam energy
 - A ring magnet (injection dump septum) saturated limiting beam energy to 1050 MeV
 - Significant time needed to optimize performance of Cryogenic Moderator System (CMS) response to increased beam power and abrupt beam trips
- Mid 2023: the new RFQ was installed which allowed for routine 1.7 MW operations at 1050 MeV with appropriate beam current margin

CAK RIDGE National Laboratory

Record beam current achieved at the SNS Front-End

- Tested a newly improved SNS H⁻ ion source with RFQ on the SNS Front-End
 - Equipped with an advanced extraction system: larger outlet aperture, φ**9mm**, and an optimized electron dumping circuit
- Achieved 60 mA RFQ output beam current
 - The beam current delivered from the ion source was administratively restricted to <80 mA per the SNS Operation Envelope Limit
 - The ion source was operated within their routine operational RF power levels (<50 kW) during the testing

The journey towards 2 MW and 5,000 hours (2.8 MW may take 1-2 more years)

CAK RIDGE National Laboratory

13

SNS science and opportunities beyond neutron scattering

At 1.7 MW the SNS linear accelerator is the **highest power proton accelerator in the world**. The facility will be capable of 2.8 MW after the execution of the Proton Power Upgrade (PPU)

Discussed at the 2021 Neutron Advisory Board and included in NScD 10-year strategic plan

Opportunity:

Advancing the construction of the STS beamline can make the extra power available for use before the STS is completed

A multi-MW high-power linear accelerator is the optimal driver for applications such as:

- Isotope production (accelerator driven production, ISOL)
- Irradiation facility (SEE Single Event Effects, High-Power Target Testing Facilities)
- Intense muon source (mSR muon spin resonance, muon beams)
- Fundamental physics (neutrinos, neutrons, accelerator R&D for muon collider)
- Material testing for nuclear fusion (with extracted SNS beam or target mount)
- Accelerator driven systems (transmutation nuclear fuel, energy production)

Why the time is now?

- We are on the verge of doubling SNS power
- Multi-B\$ investment on SNS, STS from the US taxpayers → maximize facility utilization
- ~10 years ago, the focus/concern was facility performance (operation at 1.4 MW) and reliability (targets) ...on both counts we succeeded, and we can do more.
- Utilize the extra power that will be available after PPU:
 - Anticipating the construction of the STS beamline can enable early utilization of up to 800 kW of beam power (STS early CD4 now in FY38)
 - <u>Concurrent operation of FTS, STS and</u> additional facility is possible
- Multiple missions strengthen a facility: all neutron sources in the world (J-PARC, PSI, ISIS, LANL....) are supporting multiple missions and ESS is planning to. HIFR at ORNL supports multiple missions.

Accelerator R&D program produced several "firsts"

Focused on SNS improvements and advanced research – leverages SNS unique capabilities

New records in dimension & dynamic range at BTF

• Completed the first 6D phase space measurement

Laser power challenges solved for LACE

- Two new techniques sequential resonance excitation, crab crossing – have made 1 ms laser assisted charge (LACE) exchange feasible for the first time with the use of commercial lasers
- Next step is the design of an injection system for the SNS to test operational efficiency

Model-based, ML-assisted tuning of CMS achieved

- A model-based approach with machine learning was used to improve performance of the Cryogenic Moderator System
- Resulted in improved system behavior required for future 1.7 MW operation

 Completed the first 1part-permillion 2D phase space measurement

10

x [mm]

16

HB2023 contributions from SNS

Tuesday 10/10

- Trent Thompson Effect of three-dimensional quadrupole magnet model on beam dynamics in the FODO line at the SNS Beam Test Facility
- Austin Hoover The impact of high-dimensional phase space correlations on the beam dynamics in a linear accelerator
- Andrei Shishlo SNS Linac Beam Dynamics: What We Understand, and What We Don't
- Timofey Gorlov Laser stripping of H- beam

Wednesday 10/11

- Abdurahim Oguz Two-Dimensional Temperature Measurements of Nanocrystalline Diamond Stripper Foils at the High Intensity Hydrogen Ion Beams at SNS
- Nicholas Evans Self-Consistent Injection Painting for Space Charge Mitigation

Summary

- The SNS has delivered a vibrant science program in neutron scattering, instrument development, accelerator R&D, and fundamental physics
- SNS has operated safely and reliably at 1.7 MW, and continues the rampup towards 2 MW and ultimately 2.8 MW
- The facility goal for post-PPU operation is 5,000 hours of neutron production. This will require a strong focus on operational excellence, facility availability and system reliability (with particular emphasis on target support systems)
- We have ambition to grow our scientific mission and application portfolio

BACK-UP

Power ramp-up result: after 5 years of running 1.4 MW, beam power is increasing

Other key systems improvements to support ramp-up

New RFQ ready for operations in the SNS Front end

- RFQ built at RI (DE), delivered on June 27, 2022
- Tested and commissioned in BTF
- Now in operation at the SNS frontend

High and medium-beta spare cryomodules

- Spare cryomodules fabricated in-house by SNS personnel allows SNS to repair medium beta cryomodules
- Spare high-beta and medium-beta cryomodules and is-situ plasma processing insure constant beam energy

Installation of the spare medium beta cryomodule in the slot 1 in February 2020

Lesson learned driving improvement in Hg Loop

- Moved gas supplies to high-bay
- Corrected and improved instrumentation → detected and mitigated leak in 2022

SPALLATION NEUTRON SOURCE

21