

Advanced Beam Dynamics Workshop on High Intensity and High-Brightness Hadron Beams

Alternating Phase Focusing Under Influence of Space Charge Defocusing

*S. Lauber^{1,2}, J. List^{1,2,3}, S. Yaramyshev¹, W. Barth^{1,2,3}, et al.

¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
²HIM Helmholtz-Institut Mainz, Mainz, Germany
³JGU Johannes Gutenberg-Universität, Mainz, Germany

*s.lauber@gsi.de

INTRODUCTION

What is alternating phase focusing?

Linac design without space charge

Lessons learned during APF design

New software capabilities: Tech-demo with space charge

HB Workshop 2023

S. Lauber

er Alternating Phase Focusing Under Influence of Space Charge Defocusing

WHAT IST ALTERNATING PHASE FOCUSING?

MOTIVATION

Without magnetic focusing inside the cavity, a high share of beam might be dumped to the walls.

Thus, only short cavities are feasible without magnetic focusing?

MOTIVATION

Alternating Phase Focusing Cavity (proposed in 1950s)

- Removes magnetic focusing lenses from the DTL
- Achieved with advanced *electric* focusing

BASICS OF ALTERNATING PHASE FOCUSING

Alternating Phase Focusing Cavity

- Removes magnetic focusing lenses from the DTL
- Achieved with advanced electric focusing
- Alternating focusing (F) and defocusing (D)
- Special timing of the bunch with respect to RF phase required

BASICS OF ALTERNATING PHASE FOCUSING

BASICS OF ALTERNATING PHASE FOCUSING

HISTORY

Several phaseprofiles were presented during the last decades:

- Sinusoidal ٠
- Stepfunction ٠
- Heavyside ۲
- Sawtooth

RIO	D	SEQUENCE (degrees)						ACCEL. FACTOR	0	FIELD FACTOR F (MV/m) 4 8 12 16									20	X X' (pX ab) (cm-mrad)	(total) (deg keV)	
2	-60 60 -65 55 -70 70							.500 .498 .342								:	:			3.23 2.58 2.93	70x200 86x130 74x100	
3	-90 30 -90 40							.577 .511							•					1.83 3.60	58x134 52x160	
4	-90 0 -60 -60 -70 -70	60	0 60 60					.500 .500 .421		::		•••		_						1.71 1.45 1.38	60x120 50x 58 70x 96	
5	-90 -30 -90 -90		60 90	-30 30				.546 .346												0.72 1.18	60x 60 70x 64	
6	-90 -90 -90 -90 -90 -90	0	60 70 90	60 70 90	0 0 0			.500 .447 .333	::	•							T			0.84 0.96 1.13	65x 54 70x 50 60x 50	
7	-90 -90	0	40	70	40	0		.553	•••											1,11	45x 26	
8	-90 -90 -90 -90		30 30		60 90	30 - 30 -	-30 -30	.558 .433	:											0.62 0.81	62x 30 70x 32	
		FIG	URI	E 1	Arr	ay of	bas	ic phase	seque	nce	s w	ith e	tcita	tio	n ai	nd p	perfo	rm	anc	e data.		

v v' 🔺 🖌

Table 3

Main parameters for final HSC linac design.

[Fainberg 1956]

n =

[Swenson 1975]

GBP+DTs RFQ 6/12 (C⁶⁺) Charge to mass ratio (q/A) Operation frequency (MHz) 100 1800 Total length (mm) Power (kW) (MWS) 93,98 O value (MWS) 14577 ERT length (mm) 150 Maximum field (Kipat.) 1.8 Number of cells 41 1+16Synchrotron phase 0, -60, -30, 30, 30 on.

[Lu 2012]

Alternating Phase Focusing Under Influence of Space Charge Defocusing

HISTORY

HB Workshop 2023

S. Lauber Alternating Phase Focusing Under Influence of Space Charge Defocusing

LINAC DESIGN WITHOUT SPACE CHARGE

APF-IH @ Helmholtz Linear Accelerator

GSI/FAIR & HELMHOLTZ LINEAR ACCELERATOR

S. Lauber Alternating Phase Focusing Under Influence of Space Charge Defocusing

GSI/FAIR & HELMHOLTZ LINEAR ACCELERATOR

Superconducting crossbar H-mode cavity Inclined stem Static tuner 4

Cold string assembly

GSI/FAIR & HELMHOLTZ LINEAR ACCELERATOR

BEAM DYNAMICS DESIGN OF THE ENTIRE DTL SECTION

BEAM DYNAMICS DESIGN OF THE ENTIRE DTL SECTION

HB Workshop 2023

S. Lauber Alternating Phase Focusing Under Influence of Space Charge Defocusing

LESSONS LEARNED FROM APF DESIGN

LESSONS LEARNED FROM APF DESIGN

Learnings developing our APF cavities

- The optimum phase-profile is sinus-like
 - Use splines to optimize phase profile (instead of every single phase)
- Target a fixed energy
 - Automatic scaling of phase-profile to reach energy
- Monte Carlo is inefficient
 - > Apply other global optimization strategies
- Realistic beam transport is slowly calculated
 - Use matrix-based transport-code for max. performance

A software package for APF prototyping was developed , allowing delivering beam dynamics designs within 1 day!

LESSONS LEARNED FROM APF DESIGN

Simulation Parameters

- Particle number
- Space charge accuracy (using naïve Coulomb solver)
- Gap phases

Consider 6D coupling High performance required

Accelerator Parameters

- Input/output energy
- Number of gaps
- Frequency
- Acceleration gradient (mean / minimum)
- Cell/gap-length ratio
 - **Optional: Voltage per Gap (e.g., from CST)**

Bunch Parameters

- Input emittance
- RMS/total ratio
- Mass
- Charge

Optimization

- (Initial guess of phase-profile)
- Spline points/phases
- Twiss parameters

Global/local optimizers ⇒Yields phase-profile

Cost Function

- Losses (dominates)
- Envelope size along linac
- Emittance growth

Tricks

Spline interpolation of gap phases Rescaling of phases to reach output energy

SOFTWARE CAPABILITIES: Tech-demo with space charge

BOUNDARY CONDITIONS

Realistic boundary conditions are used:

- HELIAC cryomodule 1
- UNILAC tank A1

These conditions are used to investigate the capabilities of the software under influence of space charge.

Parameter	Value							
Mass-to-charge ratio	6							
Frequency	108.408 MHz							
Injection energy	1.4 MeV/u							
Output energy	3.6 MeV/u							
Aperture radius	15 mm							
Total emittance (longitudinal)	72 deg keV/u (1.85 keV/u ns)							
Total emittance (transversal)	18 mm mrad (0.97 mm mrad <i>normalized</i>)							
Electric field gradient (avg.)	3 MV/m							

- Realistic voltage profile
 - Average field gradient
 - Minimum field gradient
 - Gaps longer -> higher voltage
- Calculated during beam dynamic due to APF geometry

What is the ideal *66 cell* structure for 5mA, ... 15mA?

- Realistic voltage profile
 - Average field gradient
 - Minimum field gradient
 - Gaps longer -> higher voltage
- Calculated during beam dynamic due to APF geometry
- What is the ideal 66 cell structure for 5mA, ... 15mA?
- Beam current is increased
 - Phases are adjusted
 - More focusing at the center
 - Less focusing at the start
 - Overall same output energy
- 7 different DTL geometries are yielded

HB Workshop 2023

S. Lauber Alternating Phase Focusing Under Influence of Space Charge Defocusing

The beam quality with 30mA heavy ion beam is still high after 7.6m transport!

Full transmission!

Considering 90% of all particles:

- 36% *longitudinal* emittance growth
- 50% transverse emittance growth

The beam quality strongly depends on the boundary conditions, that are set for each project individually.

CURRENT STATUS AND FUTURE DIRECTIONS

- Due to computer aided design of accelerators, construction is eased
- A high challenge is still the demand for expertise to design such linac
- APF acceleration is adopted in several fields
 - For dielectric acceleration, as magnetic focusing is impeded
 - For ion accelerators (also for medical application), where financial constraints are given

- APF theory must be further developed to make it more accessible
 - Ideal equations should depend on acceptance (long. & transv.), acceleration gradient, and input twiss parameters, considering 6D coupling
 - Recent solutions comprise numerical optimization

Design of high current APF structures is conveniently achievable using efficient approaches.

THANK YOU FOR YOUR ATTENTION!

