

Adrian Oeftiger

HB2023, Geneva, Switzerland 9 October 2023

FAIR Status

- string test of full SIS100 arc cell installed
- first SIS100 accelerator section to be installed in January 2024, IPAC'23 paper on SIS100 status ✓

FAIR GmbH | GSI GmbH

Adrian Oeftiger

9 October 2023

Motivation

Facility for Antiproton and Ion Research

SIS100: deliver high-intensity hadron beams

Figure: FAIR complex

FAIR GmbH | GSI GmbH

Motivation

- Facility for Antiproton and Ion Research SIS100: deliver high-intensity hadron beams
 - crucial for performance: maintain beam quality during 1-sec injection plateau
 - reference case: uranium U²⁸⁺ beam
 - largest beam size vs. transverse aperture
 - space charge induced losses
 - \rightsquigarrow important: dynamic vacuum stability
 - ⇒ low-loss operation < 5%!</p>

Figure: scaled beam sizes at 18 Tm

Motivation

- Facility for Antiproton and Ion Research SIS100: deliver high-intensity hadron beams
 - crucial for performance: maintain beam quality during 1-sec injection plateau
 - reference case: uranium U²⁸⁺ beam
 - largest beam size vs. transverse aperture
 - space charge induced losses
 - \rightsquigarrow important: dynamic vacuum stability
 - ⇒ low-loss operation < 5%!</p>

key questions

- What is the maximum tolerable intensity at the space charge limit?
- How to increase the space charge limit?

Figure: scaled beam sizes at 18 Tm

Contents

Structure:

- A. The Model
- B. Betatron Resonances:
 - Intrinsic from Space Charge
 - External from Field Errors
- C. Space Charge Limit
- D. Mitigation Measures: Conventional & Novel
 - β-beat Compensation
 - Bunch Flattening
 - Pulsed Electron Lenses

A. The Model

Space Charge Modelling

Simulation model:

track macro-particles (m.p.) through accelerator lattice & space charge kicks

Figure: sketch of simulation model

FAIR GmbH | GSI GmbH

Adrian Oeftiger

9 October 2023

Space Charge Modelling

Simulation model:

track macro-particles (m.p.) through accelerator lattice & space charge kicks

nonlinear 3D space charge (SC) models:

- self-consistent PIC: particle-in-cell for open-boundary Poisson equation
- *fixed frozen (FFSC):* constant field map independent of m.p. dynamics
- (adaptive frozen (AFSC): field map scaled with m.p. distribution momenta)

Figure: sketch of simulation model

Figure: horizontal space charge field

Maximum SC Tune Shift

$$\Delta Q_{y}^{\mathsf{SC}} = -\frac{r_{c}\lambda_{\max}}{\beta_{0}^{2}\gamma_{0}^{3}} \oint \frac{ds}{2\pi} \frac{\beta_{y}(s)}{\sigma_{y}(s)(\sigma_{x}(s) + \sigma_{y}(s))}$$

 $\begin{array}{ll} r_c: \mbox{classical ion radius} & \lambda_{\max}: \mbox{maximum line density} \\ \beta_0: \mbox{speed in } [c] & \gamma_0: \mbox{Lorentz factor} & \sigma_{x,y}: \mbox{local rms beam size} \end{array}$

FAIR GmbH | GSI GmbH

Adrian Oeftiger

9 October 2023

B. Betatron Resonances

Only Space Charge

Figure: tune diagram of beam loss

Symmetric error-free SIS100 lattice:

- perfect dipole and quadrupole magnets
- exact symmetry of S = 6
- space charge \rightarrow only source for resonances
- simulated for 160'000 turns = 1 second
- ⇒ mainly Montague resonance visible
- ⇒ absence of low-order structure resonances!

Only Space Charge

Figure: tune diagram of beam loss

Symmetric error-free SIS100 lattice:

- perfect dipole and quadrupole magnets
- exact symmetry of S = 6
- space charge \rightarrow only source for resonances
- simulated for 160'000 turns = 1 second
- ⇒ mainly Montague resonance visible
- ⇒ absence of low-order structure resonances!

Montague Resonance

Montague resonance $2Q_x - 2Q_y = 0$:

- 4th-order resonance
- intrinsically driven by space charge
- transverse emittance exchange for anisotropic beams
- ⇒ stopband always present around $Q_x \approx Q_y$ for SIS100 beams
- Space charge model predictions:
 - bad: "adaptive frozen" resolves full exchange but predicts too large stopband extent
- + good: "fixed frozen" reproduces stopband edges well!

Figure: emittance exchange

Montague Resonance

Warm Quadrupoles

Figure: SIS100 quadrupole survey

Figure: corrected warm quadrupoles

Real SIS100 lattice:

- 2 cold quadrupoles replaced by warm / normalconducting quadrupoles (radiation hardened, required in extraction region)
- breaking of S = 6 symmetry by gradient error
- → externally driven half-integer resonance
- → can be minimised by quadrupole correctors
- \Rightarrow FFSC reproduces PIC stopband edges!

Adrian Oeftiger

Figure: dipole magnets

Field error model extracted from cold bench measurements of magnet units:

- stochastic amplitudes drive non-systematic resonances
- random number sequence \rightarrow multipole errors for every dipole and quadrupole magnet

quadrupole model displayed here corresponds to PRAB paper version (based on stamped FoS), see GSI-2021-00450 report / for model based on series production and its comparison

FAIR GmbH | GSI GmbH

Adrian Oeftiger

Figure: quadrupole magnets

Field Error Model

HB'23 talk on Wednesday, C. Caliari on "Deep Lie Map Network" /:

- machine learning approach: train linear & nonlinear field errors on kick turn-by-turn data
- start from model lattice, learn error multipoles k·L
- ⇒ effective lattice to better reproduce machine behaviour

Figure: learning of quadrupole & sextupole errors

Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance condition without space charge:

$$mQ_x + nQ_y = p$$
 for $m, n, p \in \mathbb{Z}$

Figure: no space charge

Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance condition without space charge:

Figure: no space charge

Figure: with fixed frozen space charge

- → SC broadens existing resonance stopbands
- \implies optimal working point area around $(Q_x, Q_y) = (18.95, 18.87)$

FAIR GmbH GSI GmbH	Adrian Oeftiger	9 October 2023	11/23
	-		

Validation with Self-consistent PIC

Self-consistent PIC simulations:

- ✓ validated Montague resonance
- ✓ validated half-integer resonance
- → now validate full error model FFSC predictions for beam loss

note: PIC simulations take 2 days (on NVIDIA V100 GPU) vs. FFSC simulations with 7 min (on 16 CPU cores, HPC AMD)

FAIR GmbH | GSI GmbH

Adrian Oeftiger

9 October 2023

C. Space Charge Limit

dynamic definition of space charge limit

reached when loss-free working point area vanishes

Keeping all beam parameters identical, increasing N:

 \implies U²⁸⁺ space charge limit at **120%** of nominal bunch intensity N_0 :

$$\max \left| \Delta Q_y^{\mathsf{SC}} \right| = 0.36$$

Figure: low-loss area for increasing N

D. Mitigation Measures:Conventional & Novel

Correction of β -beat

Two sources of β -beat (gradient error):

warm quadrupoles: uncorrected = 2%

(a) low-loss area with warm quads

Correction of β -beat

Two sources of β -beat (gradient error):

- warm quadrupoles: uncorrected = 2%
- distributed b_2 : $\approx 0.5\%$

 \implies below $b_2 = 10$ units: no significant effect on low-loss area size

For SIS100, space charge parameter $q = \Delta Q_v^{SC}/2Q_s \approx 33$ at design $N = N_0$:

Figure 4: Results of the simulations scans for the k = 1 mode: stability thresholds of the octupole power in a dependency from the space-charge parameter q. The circles are for the octupole polarity $q_4 > 0$, the squares are for the octupole polarity $q_4 > 0$.

(a) Required octupole strength for stabilisation of single-bunch resistive-wall instability [V. Kornilov, IPAC'23] \nearrow

(b) Incoherently tolerable octupole strengths

- octupole current of $k_3L = 35 \text{ m}^{-3}$ corresponds to $q_4 = 0.55$.
- ⇒ single-bunch stability through Landau damping from octupoles, transverse feedback system required for coupled-bunch stability

FAIR GmbH | GSI GmbH

Adrian Oeftiger

9 October 2023

Double-harmonic RF

Add h = 20 harmonic in bunch lengthening mode:

$$V_{h=20} = V_{h=10}/2$$

 \implies obtain flattened bunches with reduced line density at 80% of nominal $\lambda_{max}.$

Figure: rms-equivalent line densities

Increasing N for double-harmonic RF:

 find space charge limit at 150% of nominal intensity N₀

Figure: low-loss area for increasing N

Novel: Pulsed Electron Lenses

Figure: e-lens model for SIS18 [K. Schulte-Urlichs et al., IPAC'22] \nearrow

Figure: Modulation grid.

Short insertion (here L = 3.36 m) with co-propagating electron beam:

- transversely homogeneous distribution
- Iongitudinally modulated to match ion bunch profile
- → compensate longitudinal dependency of space charge
- ⇒ suppress periodic resonance crossing
- → additionally provide strong Landau damping for head-tail modes:
 - V. Gubaidulin et al., PRAB 25, 084401 (2022) / [tbc with strong SC]

Tune Footprint vs. E-Lens Compensation $F_{A}R$ $rssmith{n}$

Some $n_{\rm el}$ e-lenses with $l_{\rm e}$ current and rms beam size $\sigma_{\rm e}$ provide tune shift:

$$\Delta Q_{y}^{\mathsf{e}} = \frac{1}{4\pi} \sum_{k=1}^{n_{\mathsf{e}|}} \beta_{y}(s_{k}) \frac{r_{\mathsf{c}}}{Ze} \frac{I_{\mathsf{e}}}{\sigma_{\mathsf{e}}^{2} \gamma_{0}} \frac{1 - \beta_{\mathsf{e}} \beta_{0}}{\beta_{\mathsf{e}}} \frac{L}{\beta_{0} c}$$

Define linear compensation degree (for Gaussian bunches $\Delta Q^{KV} = \Delta Q^{SC}/2$):

$$\alpha \doteq \frac{\Delta Q^{\mathsf{e}}}{\left|\Delta Q^{\mathsf{KV}}\right|}$$

Remarks:

dipole tune increases with

$$\Delta Q_{dip} = \alpha \cdot \Delta Q^{e}$$

without chroma, α = 0.5 yields smallest tune spread!

FAIR GmbH | GSI GmbH

9 October 2023

Figure: Gaussian bunch, tune footprint vs. e-lens strength (black: $\Delta p/p_0 = 0$, grey: with natural chromatic detuning)

Optimal E-Lens Configuration

In SIS100 with natural chromaticity:

Figure: FAIR design intensity $N = N_0$ with $n_{el} = 3$ pulsed e-lenses.

• optimal choice of α depends on nearby resonances

 \implies depends on particularities of synchrotron

SIS100: at low $n_{\rm el} \le 6$, $\alpha = 0.5$ optimal vs. high $n_{\rm el} > 6$, $\alpha = 0.7$ better

Figure: low-loss area for increasing N

Table: SC limit with electron lenses.

Number n _{el}	SC limit	Gain
0	1.4 · N ₀	100%
3	$1.8 \cdot N_0$	130%
6	$2.1 \cdot N_0$	150%
12	$2.6 \cdot N_0$	185%
24,∞	$2.8 \cdot N_0$	200%

Remarks:

- SC limit scales well
- n_{el} = 24 case saturates gain
- theoretical 2D limit (Q_s = 0, no e-lenses) = by construction no periodic resonance crossing

 \implies reached after $n_{\rm el} = 24, \infty$

Involved Publications

Dmitrii Rabusov *,*, Adrian Oeftiger b, Oliver Boine-Frankenheim *,b

* Technische Universität Darmstadt, Schlossgartenstr. 8, 64289 Darmstadt, Germany

^b GSI Helmholtztentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany

FAIR GmbH | GSI GmbH

Adrian Oeftiger

9 October 2023

Conclusion

FAIR E = i

Summary:

- identified **optimal tune area** in SIS100 around $(Q_x, Q_y) = (18.95, 18.87)$
- explored space charge limit: $\max \left| \Delta Q_y^{SC} \right| = 0.36$
 - nominal SIS100: +20% intensity
 - double-harmonic RF: +50% intensity
 - 3 pulsed electron lenses: +70..80% intensity
- FAIR start planned in 2028 with "Early Science" programme

Conclusion

Summary:

- identified **optimal tune area** in SIS100 around $(Q_x, Q_y) = (18.95, 18.87)$
- explored space charge limit: max $\left| \Delta Q_y^{SC} \right| = 0.36$
 - nominal SIS100: +20% intensity
 - double-harmonic RF: +50% intensity
 - 3 pulsed electron lenses: +70..80% intensity
- FAIR start planned in 2028 with "Early Science" programme

take-home messages

- fixed frozen SC model fast & validated tool to identify resonance-free tunes
- dynamic space charge limit: find based on tolerable loss & emittance growth
- pulsed electron lenses: optimum configuration for space charge mitigation

Thank you for your attention!

Acknowledgements:

GSI: O. Boine-Frankenheim, V. Chetvertkova, V. Kornilov, D. Rabusov, S. Sorge, D. Ondreka, A. Bleile, V. Maroussov, C. Roux, K. Sugita

CERN: R. de Maria, G. Iadarola, M. Schwinzerl