

Adrian Oeftiger

HB2023, Geneva, Switzerland 9 October 2023

FAIR Status

- string test of full SIS100 arc cell installed
- first SIS100 accelerator section to be installed in January 2024, [IPAC'23 paper on SIS100 status](https://doi.org/10.18429/jacow-ipac2023-mopa062) ↗

FAIR GmbH | GSI GmbH | **Adrian Oeftiger** 9 October 2023 1/23

Motivation

Facility for Antiproton and Ion Research SIS100: deliver high-intensity hadron beams

Figure: FAIR complex

FAIR GmbH | GSI GmbH Adrian Oeftiger 9 October 2023 2/23

Motivation

- Facility for Antiproton and Ion Research SIS100: deliver high-intensity hadron beams
	- crucial for performance: maintain beam quality during 1-sec injection plateau
	- reference case: uranium U28⁺ beam ٠
		- largest beam size vs. transverse aperture
		- space charge induced losses m.
			- \rightarrow important: dynamic vacuum stability
			- \Rightarrow low-loss operation < 5%!

Figure: scaled beam sizes at 18 Tm

Motivation

- Facility for Antiproton and Ion Research SIS100: deliver high-intensity hadron beams
	- crucial for performance: maintain beam quality during 1-sec injection plateau
	- reference case: uranium U^{28+} beam
		- largest beam size vs. transverse aperture
		- space charge induced losses
			- \rightarrow important: dynamic vacuum stability
			- \Rightarrow low-loss operation < 5%!

key questions

- What is the maximum tolerable intensity at the space charge limit?
- How to increase the space charge limit?

Figure: scaled beam sizes at 18 Tm

FAIR GmbH | GSI GmbH | \overline{A} Adrian Oeftiger | 9 October 2023 | 2/23

Contents

Structure:

- A. The Model
- B. Betatron Resonances:
	- Intrinsic from Space Charge **COL**
	- External from Field Errors
- C. Space Charge Limit
- D. Mitigation Measures: Conventional & Novel
	- *β*-beat Compensation
	- **Bunch Flattening**
	- Pulsed Electron Lenses

A. The Model

Space Charge Modelling

Simulation model:

n track macro-particles (m.p.) through accelerator lattice & space charge kicks

Figure: sketch of simulation model

FAIR GmbH | GSI GmbH | Adrian Oeftiger 9 October 2023 4/23

Simulation model:

the track macro-particles (m.p.) through accelerator lattice & space charge kicks

nonlinear 3D space charge (SC) models:

- self-consistent PIC: particle-in-cell for open-boundary Poisson equation
- fixed frozen $(FFSC)$: constant field map independent of m.p. dynamics
- (adaptive frozen (AFSC): field map scaled with m.p. distribution momenta)

Figure: sketch of simulation model

Figure: horizontal space charge field

Maximum SC Tune Shift

$$
\Delta Q_{y}^{SC} = -\frac{r_c \lambda_{\text{max}}}{\beta_0^2 \gamma_0^3} \oint \frac{ds}{2\pi} \frac{\beta_y(s)}{\sigma_y(s)(\sigma_x(s) + \sigma_y(s))}
$$

 r_c : classical ion radius λ_{max} : maximum line density $β_0$: speed in [c] *γ*₀: Lorentz factor $σ_{x,y}$: local rms beam size

B. Betatron Resonances

Only Space Charge

Figure: tune diagram of beam loss

Symmetric error-free SIS100 lattice:

- perfect dipole and quadrupole magnets
- exact symmetry of $S = 6$
- space charge \rightarrow only source for resonances
- simulated for $160'000$ turns $= 1$ second
- mainly Montague resonance visible
- absence of low-order structure resonances!

Only Space Charge

Figure: tune diagram of beam loss

Symmetric error-free SIS100 lattice:

- perfect dipole and quadrupole magnets
- exact symmetry of $S = 6$
- space charge \rightarrow only source for resonances
- simulated for $160'000$ turns $= 1$ second
- mainly Montague resonance visible
- absence of low-order structure resonances!

Montague Resonance

Montague resonance $2Q_x - 2Q_y = 0$:

- 4th-order resonance
- intrinsically driven by space charge
- transverse emittance exchange for anisotropic beams
- \Rightarrow stopband always present around $Q_x \approx Q_y$ for SIS100 beams

Space charge model predictions:

- − bad: "adaptive frozen" resolves full exchange but predicts too large stopband extent rige model predictions:

"adaptive frozen" resolves full exchange

but predicts too large stopband extent

"fixed frozen" reproduces stopband

edges well!
- + good: "fixed frozen" reproduces stopband

Figure: emittance exchange

Montague Resonance

Warm Quadrupoles

Figure: SIS100 quadrupole survey

Figure: corrected warm quadrupoles

Real SIS100 lattice:

- 2 cold quadrupoles replaced by warm / п normalconducting quadrupoles (radiation hardened, required in extraction region)
- **E** breaking of $S = 6$ symmetry by gradient error
- externally driven half-integer resonance
- can be minimised by quadrupole correctors
- FFSC reproduces PIC stopband edges!

FAIR GmbH | GSI GmbH Adrian Oeftiger 9 October 2023 8/23

1.5 2.0 Amplitude [10-4]

1.5

1.0

1.0

0.0 0.5 1.0

2.5

Field Error Model

Field error model extracted from cold bench measurements of magnet units:

 b_2 b_3 b_4 b_5 b_6 b_7 a_2 a_3 a_4 a_5 a_6 a_7 Multipole components in dipole magnets

Figure: dipole magnets

s stochastic amplitudes drive non-systematic resonances

stochastic rms systematic

random number sequence \rightarrow multipole errors for every dipole and quadrupole magnet

> quadrupole model displayed here corresponds to PRAB paper version (based on stamped FoS), see [GSI-2021-00450 report](https://arxiv.org/abs/2204.06441) ↗ for model based on series production and its comparison

Amplitude $[10^{-4}]$
 $\frac{10}{10}$
 $\frac{10}{10}$

FAIR GmbH | GSI GmbH Adrian Oeftiger 9 October 2023 9/23

 b_2 b_3 b_4 b_5 b_6 b_7 a₃ a₄ a₅ a₆ a₇ Multipole components in quadrupole magnets

Figure: quadrupole magnets

stochastic rms systematic

r e i

HB'23 talk on Wednesday, [C. Caliari on "Deep Lie Map Network"](https://indico.cern.ch/event/1138716/contributions/5558642/) ∕:

- machine learning approach: train linear & nonlinear field errors on kick turn-by-turn data
- start from model lattice, learn error multipoles k ·L
- \Rightarrow effective lattice to better reproduce machine behaviour

Figure: learning of quadrupole & sextupole errors

Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance condition without space charge:

$$
mQ_x + nQ_y = p \quad \text{for} \quad m, n, p \in \mathbb{Z}
$$

Figure: no space charge

FAIR GmbH | GSI GmbH | \overline{A} Adrian Oeftiger | 9 October 2023 | 11/23

Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance condition without space charge:

Figure: no space charge

Figure: with fixed frozen space charge

- SC broadens existing resonance stopbands
- optimal working point area around $(Q_x, Q_y) = (18.95, 18.87)$

FAIR GmbH | GSI GmbH | Adrian Oeftiger 9 October 2023 11/23

Validation with Self-consistent PIC

Self-consistent PIC simulations:

- ✓ validated Montague resonance
- ✓ validated half-integer resonance
- now validate full error model FFSC predictions for beam loss

note: PIC simulations take 2 days (on NVIDIA V100 GPU) vs. FFSC simulations with 7 min (on 16 CPU cores, HPC AMD)

C. Space Charge Limit

dynamic definition of space charge limit

reached when loss-free working point area vanishes

Keeping all beam parameters identical, increasing N:

 \implies U^{28+} space charge limit at 120% of nominal bunch intensity N_0 :

$$
\max \left| \Delta Q_y^{\mathsf{SC}} \right| = 0.36
$$

Figure: low-loss area for increasing N

D. Mitigation Measures: Conventional & Novel

Correction of *β*-beat

Two sources of *β*-beat (gradient error): **u** warm quadrupoles: uncorrected = 2%

(a) low-loss area with warm quads

FAIR GmbH | GSI GmbH | $\overline{2023}$ 14/23

Correction of *β*-beat

Two sources of *β*-beat (gradient error):

- **u** warm quadrupoles: uncorrected = 2%
- distributed b_2 : $\approx 0.5\%$ $\mathcal{L}_{\mathcal{A}}$

 \implies below $b_2 = 10$ units: no significant effect on low-loss area size

For SIS100, space charge parameter $q = \Delta Q_y^{\rm SC}/2Q_s \approx 33$ at design $N = N_0$:

Figure 4: Results of the simulations scans for the $k = 1$ mode: stability thresholds of the octupole power in a dependency from the space-charge parameter a . The circles are for the octupole polarity $q_4 > 0$, the squares are for the octupole polarity $a_4 < 0$.

(a) Required octupole strength for stabilisation of single-bunch resistive-wall instability [\[V. Kornilov, IPAC'23\]](https://www.doi.org/10.18429/JACoW-IPAC2023-WEPA015) ↗

(b) Incoherently tolerable octupole strengths

- octupole current of $k_3L = 35 \,\text{m}^{-3}$ corresponds to $q_4 = 0.55$.
- single-bunch stability through Landau damping from octupoles, transverse feedback system required for coupled-bunch stability

FAIR GmbH | GSI GmbH | $\overline{O(1)}$ Adrian Oeftiger | 9 October 2023 | 15/23

Double-harmonic RF

Add $h = 20$ harmonic in bunch lengthening mode:

$$
V_{h=20}=V_{h=10}/2\,
$$

 \implies obtain flattened bunches with reduced line density at 80% of nominal *λ*max.

FAIR restir

Figure: rms-equivalent line densities

Figure: low-loss area for increasing N

Increasing N for double-harmonic RF:

find space charge limit at 150% of nominal intensity N_0

Novel: Pulsed Electron Lenses

Short insertion (here $L = 3.36$ m) with co-propagating electron beam:

- **n** transversely homogeneous distribution
- longitudinally modulated to match ion bunch profile
- compensate longitudinal dependency of space charge
- suppress periodic resonance crossing
- additionally provide strong Landau damping for head-tail modes:
	- [V. Gubaidulin et al., PRAB 25, 084401 \(2022\)](https://doi.org/10.1103/PhysRevAccelBeams.25.084401) \mathcal{N} [tbc with strong SC]

Some n_{el} e-lenses with I_e current and rms beam size σ_e provide tune shift:

$$
\Delta Q_y^{\text{e}} = \frac{1}{4\pi} \sum_{k=1}^{n_{\text{eI}}} \beta_y(s_k) \frac{r_c}{Ze} \frac{l_{\text{e}}}{\sigma_{\text{e}}^2 \gamma_0} \frac{1 - \beta_{\text{e}} \beta_0}{\beta_{\text{e}}} \frac{L}{\beta_0 c}
$$

Define linear compensation degree (for Gaussian bunches $\Delta Q^{KV} = \Delta Q^{SC}/2$:

$$
\alpha \doteq \frac{\Delta Q^e}{\left| \Delta Q^{KV} \right|}
$$

Remarks:

dipole tune increases with

$$
\Delta Q_{\rm dip} = \alpha \cdot \Delta Q^{\rm e}
$$

without chroma, $\alpha = 0.5$ yields smallest tune spread!

 $-2 +$ -1 $0 1 + \Box$ 2⊣⊟ Tune footprint
[AQ:^{xv}] [
[Q _ Q _ Q
[_ L _ Q _ Q bare tune dipole 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Linear compensation degree α $1.5 +$ $1.75 +$ $\overline{}$ $\ge 2.25 \frac{1}{2}$
Spread 2
 $\frac{1}{2}$
 $\frac{1}{2}$

FAIR GmbH | GSI GmbH | Adrian Oeftiger 9 October 2023 19/23

Optimal E-Lens Configuration

In SIS100 with natural chromaticity:

Figure: FAIR design intensity $N = N_0$ with $n_{el} = 3$ pulsed e-lenses.

optimal choice of *α* depends on nearby resonances

 \Rightarrow depends on particularities of synchrotron

SIS100: at low $n_{el} \le 6$, $\alpha = 0.5$ optimal vs. high $n_{el} > 6$, $\alpha = 0.7$ better

Figure: low-loss area for increasing N

Table: SC limit with electron lenses.

Remarks:

- SC limit scales well
- $n_{\text{el}} = 24$ case saturates gain
- **theoretical 2D limit (** $Q_s = 0$ **,** no e-lenses) = by construction no periodic resonance crossing

 \implies reached after $n_{\text{el}} = 24, \infty$

Involved Publications

FAIR GmbH | GSI GmbH Adrian Oeftiger 9 October 2023 22/23

Conclusion

r e ir

Summary:

- identified **optimal tune area** in SIS100 around $(Q_x, Q_y) = (18.95, 18.87)$
- explored **space charge limit**: max $\left| \Delta Q_{y}^{\mathsf{SC}} \right| = 0.36$
	- nominal SIS100: +20% intensity
	- double-harmonic $RF: +50\%$ intensity
	- 3 pulsed electron lenses: +70..80% intensity
- FAIR start planned in 2028 with "Early Science" programme

Conclusion

Summary:

- identified **optimal tune area** in SIS100 around $(Q_x, Q_y) = (18.95, 18.87)$
- explored **space charge limit**: max $\left| \Delta Q_{y}^{\mathsf{SC}} \right| = 0.36$
	- nominal SIS100: +20% intensity
	- double-harmonic RF: +50% intensity
	- 3 pulsed electron lenses: +70..80% intensity
- FAIR start planned in 2028 with "Early Science" programme

take-home messages

- fixed frozen SC model fast & validated tool to identify resonance-free tunes
- dynamic space charge limit: find based on tolerable loss & emittance growth
- pulsed electron lenses: optimum configuration for space charge mitigation

Thank you for your attention!

Acknowledgements:

GSI: O. Boine-Frankenheim, V. Chetvertkova, V. Kornilov, D. Rabusov, S. Sorge, D. Ondreka, A. Bleile, V. Maroussov, C. Roux, K. Sugita

CERN: R. de Maria, G. Iadarola, M. Schwinzerl