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FAIR Status

drone video of construction site ↗

string test of full SIS100 arc cell installed
first SIS100 accelerator section to be installed in January 2024,
IPAC’23 paper on SIS100 status ↗
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https://www.youtube.com/watch?v=pnvZfVNyUSQ
https://doi.org/10.18429/jacow-ipac2023-mopa062


Motivation

Facility for Antiproton and Ion Research
SIS100: deliver high-intensity hadron beams

crucial for performance: maintain beam
quality during 1-sec injection plateau

reference case: uranium U28+ beam

largest beam size vs. transverse aperture
space charge induced losses
⇝ important: dynamic vacuum stability
=⇒ low-loss operation < 5%!

key questions
What is the maximum tolerable intensity at
the space charge limit?
How to increase the space charge limit?

Status: 07.07.2017
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A. The Model



Space Charge Modelling

Simulation model:
track macro-particles (m.p.) through accelerator lattice & space charge kicks

nonlinear 3D space charge (SC) models:

self-consistent PIC: particle-in-cell for open-boundary Poisson equation
fixed frozen (FFSC): constant field map independent of m.p. dynamics
(adaptive frozen (AFSC): field map scaled with m.p. distribution momenta)

Figure: sketch of simulation model
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Space Charge at SIS100 Accumulation

Maximum SC Tune Shift

∆QSC
y =− rcλmax

β2
0γ

3
0

∮
ds

2π
βy (s)

σy (s)
(
σx (s)+σy (s)

)
rc : classical ion radius λmax : maximum line density
β0 : speed in [c] γ0 : Lorentz factor σx ,y : local rms beam size
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turns: 1   (particle-in-cell simulations)

working point

Hor. norm. rms emittance ϵx 5.9 mmmrad
Vert. norm. rms emittance ϵy 2.5 mmmrad

Rms bunch length σz 13.2 m
Bunch intensity N0 of U28+ ions 6.25×1010

Max. space charge ∆QSC
y −0.30

Rms chromatic Q ′
x ,y ·σ∆p/p0 0.01

Synchrotron tune Qs 4.5×10−3

Kinetic energy Ekin =200MeV/u
Relativistic β factor 0.568

Revolution frequency frev 157 kHz
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B. Betatron Resonances



Only Space Charge
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Figure: tune diagram of beam loss

Symmetric error-free SIS100 lattice:
perfect dipole and quadrupole magnets
exact symmetry of S = 6
space charge → only source for resonances
simulated for 160’000 turns = 1 second

=⇒ mainly Montague resonance visible
=⇒ absence of low-order structure resonances!
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Symmetric error-free SIS100 lattice:
perfect dipole and quadrupole magnets
exact symmetry of S = 6
space charge → only source for resonances
simulated for 160’000 turns = 1 second

=⇒ mainly Montague resonance visible
=⇒ absence of low-order structure resonances!
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Montague Resonance

Montague resonance 2Qx −2Qy = 0:

4th-order resonance
intrinsically driven by space charge
transverse emittance exchange for
anisotropic beams

=⇒ stopband always present around Qx ≈Qy

for SIS100 beams

Space charge model predictions:
− bad: “adaptive frozen” resolves full exchange

but predicts too large stopband extent
+ good: “fixed frozen” reproduces stopband

edges well!
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Figure: emittance exchange

Observation
“Fixed frozen” model much better suited than “adaptive frozen” to
approximate realistic PIC when identifying loss-free conditions!
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Warm Quadrupoles

super-conducting quadrupoles
warm quadrupoles
corrector quadrupoles
assigned correctors

Figure: SIS100 quadrupole survey
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Figure: corrected warm quadrupoles

Real SIS100 lattice:
2 cold quadrupoles replaced by warm /
normalconducting quadrupoles (radiation
hardened, required in extraction region)
breaking of S = 6 symmetry by gradient error

−→ externally driven half-integer resonance
−→ can be minimised by quadrupole correctors
=⇒ FFSC reproduces PIC stopband edges!
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Field Error Model
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Figure: quadrupole magnets

Field error model extracted from cold bench measurements of magnet units:
stochastic amplitudes drive non-systematic resonances
random number sequence → multipole errors for every dipole and
quadrupole magnet

quadrupole model displayed here corresponds to PRAB paper version (based on stamped FoS),
see GSI-2021-00450 report ↗ for model based on series production and its comparison
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https://arxiv.org/abs/2204.06441


Field Error Model from Beam

HB’23 talk on Wednesday, C. Caliari on “Deep Lie Map Network” ↗:

machine learning approach:
train linear & nonlinear field
errors on kick turn-by-turn data
start from model lattice, learn
error multipoles k ·L

=⇒ effective lattice to better
reproduce machine behaviour
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Figure: learning of quadrupole & sextupole errors
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https://indico.cern.ch/event/1138716/contributions/5558642/


Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance
condition without space charge:

mQx +nQy = p for m,n,p ∈Z
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Figure: no space charge

include=⇒
SC
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Figure: with fixed frozen space charge

−→ SC broadens existing resonance stopbands
=⇒ optimal working point area around (Qx ,Qy )= (18.95,18.87)
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Figure: with fixed frozen space charge

−→ SC broadens existing resonance stopbands
=⇒ optimal working point area around (Qx ,Qy )= (18.95,18.87)
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Validation with Self-consistent PIC

Self-consistent PIC simulations:
✓ validated Montague resonance
✓ validated half-integer resonance

−→ now validate full error model FFSC predictions for beam loss

18.75 18.80 18.85 18.90 18.95 19.00
Qx

18.70

18.75

18.80

18.85

18.90

18.95

19.00

Q
y

error seeds: [1]
turns: 20000   (particle-in-cell simulations)

PIC loss-free
best working point

0
0.3
1
2
3

5

7

10

Be
am

 lo
ss

es
 [%

]

Figure: self-consistent PIC simulations
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Figure: comparison between SC models

note: PIC simulations take 2 days (on NVIDIA V100 GPU) vs. FFSC simulations with 7 min (on 16 CPU cores, HPC AMD)
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C. Space Charge Limit



Space Charge Limit

dynamic definition of space charge limit
reached when loss-free working point area vanishes
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Figure: low-loss area for increasing N

Keeping all beam parameters identical,
increasing N:
=⇒ U28+ space charge limit at 120% of

nominal bunch intensity N0:

max
∣∣∣∆QSC

y

∣∣∣= 0.36
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D. Mitigation Measures:
Conventional & Novel



Correction of β-beat

Two sources of β-beat (gradient error):
warm quadrupoles: uncorrected = 2%

distributed b2: ≈ 0.5%
=⇒ below b2 = 10units: no significant effect on low-loss area size
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A Word on Coherent Stability

For SIS100, space charge parameter q =∆QSC
y /2Qs ≈ 33 at design N =N0:

(a) Required octupole strength for stabilisation
of single-bunch resistive-wall instability
[V. Kornilov, IPAC’23] ↗
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(b) Incoherently tolerable octupole strengths

octupole current of k3L= 35m−3 corresponds to q4 = 0.55.
=⇒ single-bunch stability through Landau damping from octupoles,

transverse feedback system required for coupled-bunch stability
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Double-harmonic RF

Add h= 20 harmonic in bunch lengthening
mode:

Vh=20 =Vh=10/2

=⇒ obtain flattened bunches with reduced line
density at 80% of nominal λmax.

40 20 0 20 40
z [m]

0.00

0.25

0.50

0.75

1.00

(z
)/

G
au

ss
(0

) h = 10 h1 = 10
h2 = 20

Figure: rms-equivalent line densities
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Figure: single-harmonic RF
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Figure: double-harmonic RF
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SC Limit with Double-harmonic RF

Increasing N for double-harmonic RF:
find space charge limit at 150% of nominal
intensity N0
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Figure: low-loss area for increasing N
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Novel: Pulsed Electron Lenses

Figure: e-lens model for SIS18 [K. Schulte-Urlichs et al., IPAC’22] ↗ Figure: Modulation grid.

Short insertion (here L= 3.36m) with co-propagating electron beam:
transversely homogeneous distribution
longitudinally modulated to match ion bunch profile

−→ compensate longitudinal dependency of space charge
=⇒ suppress periodic resonance crossing
−→ additionally provide strong Landau damping for head-tail modes:

V. Gubaidulin et al., PRAB 25, 084401 (2022) ↗ [tbc with strong SC]
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https://doi.org/10.1103/PhysRevAccelBeams.25.084401


Tune Footprint vs. E-Lens Compensation

Some nel e-lenses with Ie current and rms beam size σe provide tune shift:
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Remarks:

dipole tune increases with

∆Qdip =α ·∆Qe

without chroma, α= 0.5
yields smallest tune spread!
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Figure: Gaussian bunch, tune footprint vs. e-lens strength
(black: ∆p/p0 =0, grey: with natural chromatic detuning)
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Optimal E-Lens Configuration

In SIS100 with natural chromaticity:
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(a) α=0
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(b) α=0.5

18.5 18.6 18.7 18.8 18.9 19.0
Qx

18.5

18.6

18.7

18.8

18.9

19.0

Q
y

turns: 20000 0
1
2
3
4
5
6
7
8

Be
am

 lo
ss

es
 [%

]

(c) α=0.7
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(d) α=1

Figure: FAIR design intensity N =N0 with nel =3 pulsed e-lenses.

optimal choice of α depends on nearby resonances
=⇒ depends on particularities of synchrotron

SIS100: at low nel ≤ 6, α= 0.5 optimal vs. high nel > 6, α= 0.7 better
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SC Limit with Pulsed E-Lenses
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Figure: low-loss area for increasing N

Table: SC limit with electron lenses.

Number nel SC limit Gain
0 1.4 ·N0 100%
3 1.8 ·N0 130%
6 2.1 ·N0 150%
12 2.6 ·N0 185%

24,∞ 2.8 ·N0 200%

Remarks:
SC limit scales well
nel = 24 case saturates gain
theoretical 2D limit (Qs = 0,
no e-lenses) = by construction
no periodic resonance crossing
=⇒ reached after nel = 24,∞
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Conclusion

Summary:
identified optimal tune area in SIS100 around (Qx ,Qy )= (18.95,18.87)

explored space charge limit: max
∣∣∣∆QSC

y

∣∣∣= 0.36

nominal SIS100: +20% intensity
double-harmonic RF: +50% intensity
3 pulsed electron lenses: +70..80% intensity

FAIR start planned in 2028 with “Early Science” programme

take-home messages
fixed frozen SC model fast & validated tool to identify resonance-free tunes
dynamic space charge limit: find based on tolerable loss & emittance growth
pulsed electron lenses: optimum configuration for space charge mitigation
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Thank you for your attention!

Acknowledgements:

GSI: O. Boine-Frankenheim, V. Chetvertkova, V. Kornilov, D. Rabusov, S. Sorge,
D. Ondreka, A. Bleile, V. Maroussov, C. Roux, K. Sugita

CERN: R. de Maria, G. Iadarola, M. Schwinzerl




