

# WGA: Beam Dynamics in Rings summary & highlights

H. Bartosik, G. Rumolo, J.L. Vay, N. Wang



- Compensation of resonances driven by magnet errors is standard practice
  - Beam based measurements in particular for existing machines without detailed error models











- Compensation of resonances driven by magnet errors is standard practice
  - Beam based measurements in particular for existing machines without detailed error models
- New method for identifying magnetic field errors "Deep Lie-Map Networks"





- Compensation of resonances driven by magnet errors is standard practice
  - o Beam based measurements in particular for existing machines without detailed error models
- New method for identifying magnetic field errors "Deep Lie-Map Networks"
- Space charge structure resonance mitigated by optics optimization (J-PARC MR)



#### Takaaki Yasui, KEK





- Compensation of resonances driven by magnet errors is standard practice
  - Beam based measurements in particular for existing machines without detailed error models
- New method for identifying magnetic field errors "Deep Lie-Map Networks"
- Space charge structure resonance mitigated by optics optimization (J-PARC MR)
- Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)





#### **Shouyan Xu, IHEP**





- Compensation of resonances driven by magnet errors is standard practice
  - Beam based measurements in particular for existing machines without detailed error models
- New method for identifying magnetic field errors "Deep Lie-Map Networks"
- Space charge structure resonance mitigated by optics optimization (J-PARC MR)
- Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)
- New painting scheme to reduce foil temperature and edge focusing for CSNS-II

(using a pulsed chicane)

#### Ming-Yang Huang, IHEP







- Compensation of resonances driven by magnet errors is standard practice
  - Beam based measurements in particular for existing machines without detailed error models
- New method for identifying magnetic field errors "Deep Lie-Map Networks"
- Space charge structure resonance mitigated by optics optimization (J-PARC MR)
- Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)
- New painting scheme to reduce foil temperature and edge focusing for CSNS-II (using a pulsed chicane)
- Open question from V. Lebedev: what is the **maximum achievable space charge tune shift** in real machine with highly super-periodic lattice operating above half-integer?



- Compensation of resonances driven by magnet errors is standard practice
  - Beam based measurements in particular for existing machines without detailed error models
- New method for identifying magnetic field errors "Deep Lie-Map Networks"
- Space charge structure resonance mitigated by optics optimization (J-PARC MR)
- Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)
- New painting scheme to reduce foil temperature and edge focusing for CSNS-II (using a pulsed chicane)
- Open question from V. Lebedev: what is the **maximum achievable space charge tune shift** in real machine with highly super-periodic lattice operating above half-integer?
- A. Oeftiger proposed to formulate the efficiency of resonance compensation as "how much intensity could be gained by resonance compensation for a given amount of acceptable losses"



# Progress in understanding space charge effects

- New 2 particle model with space charge and chromaticity for coasting beam
  - Shows coupling / exchange between coherent and incoherent motion, also confirmed in multiparticle simulations as well as indications in measurements (CERN PSB)
  - Past studies from I. Karpov did not address this exchange
  - E. Metral suggested extension to include impedance

#### Giuliano Franchetti, GSI



If the center of mass oscillates, it is a measurable quantity



The motion of the center of mass is of a "coherent" dynamics

The motion with respect to the center of mass "may be an incoherent dynamics"







# Progress in understanding space charge effects

- New 2 particle model with space charge and chromaticity for coasting beam
  - Shows coupling / exchange between coherent and incoherent motion, also confirmed in multiparticle simulations as well as indications in measurements (CERN PSB)
  - o Past studies from I. Karpov did not address this exchange
  - E. Metral suggested extension to include impedance
- Coherent dispersion effect with space charge
  - Coherent beam instabilities with dispersion (previously studied for 2D coasting beams)
  - In the 3D case, sidebands appear around the envelope modes





#### Yaoshuo Yuan, IHEP

Sidebands appear around the envelope modes

In the presence of space charge, the split of dispersion mode is coupled to envelope modes



# Studies for characterizing luminosity

- Non-factorizable distributions in LHC van der Meer scans triggered space charge study
  - Demonstrated experimentally that space charge induced periodic resonance crossing generates statistical dependence in transverse planes (CERN PSB)
  - Evolution along CERN injector chain and impact on luminosity factorization in LHC to be studied

#### measured beam profiles before/after vertical scraping





#### tail population correlated between planes



**Elleanor Lamb, CERN** 



# Studies for characterizing luminosity

- Non-factorizable distributions in LHC van der Meer scans triggered space charge study
  - Demonstrated experimentally that space charge induced periodic resonance crossing generates statistical dependence in transverse planes (CERN PSB)
  - Evolution along CERN injector chain and impact on luminosity factorization in LHC to be studied
- Detailed studies of beam beam effects on luminosity in LHC
  - o BB experiment at the LHC allowed to validate key aspects of the simulation model at the % level
  - Numerical simulations are invaluable tools to push precisions of LHC luminosity





Tatiana Pieloni, EPFL

Measurements of the impact of BB effects on the luminosity in LHC



# Controlling & mitigating impedance driven instabilities

- Precise control of coherent tune shifts to ensure damper working efficiently in SPS
  - Excellent agreement between model and measurement
  - So far no strong impact of tune shift on emittance blow-up to be studied at brightness limit
  - Question: Can we use a reactive damper to correct the bunch-by-bunch tune shifts?

#### **Ingrid Mases, CERN**







# Controlling & mitigating impedance driven instabilities

- Precise control of coherent tune shifts to ensure damper working efficiently in SPS
  - Excellent agreement between model and measurement
  - So far no strong impact of tune shift on emittance blow-up to be studied at brightness limit
  - Question: Can we use a reactive damper to correct the bunch-by-bunch tune shifts?
- Nice example of curing longitudinal microbunch structure in J-PARC MR
  - Impedance reduction of eddy current septa confirmed by improved beam structure







#### Understanding and characterization of instabilities

- Significant progress in theoretical treatment of longitudinal instabilities
  - Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
  - Generalized threshold due to loss of Landau damping and coupled bunch instabilities
  - Important role of RF nonlinearity → radial mode-coupling instability

#### Ivan Karpov, CERN







#### Understanding and characterization of instabilities

- Significant progress in theoretical treatment of longitudinal instabilities
  - Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
  - Generalized threshold due to loss of Landau damping and coupled bunch instabilities
  - Important role of RF nonlinearity → radial mode-coupling instability
- Impact of space charge on transverse instabilities
  - Experimentally measured rise times can be reproduced in simulations without space charge,
     but not the intra-bunch motion → to be compared to convective instabilities (A. Burov)





#### Understanding and characterization of instabilities

- Significant progress in theoretical treatment of longitudinal instabilities
  - Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
  - Generalized threshold due to loss of Landau damping and coupled bunch instabilities
  - Important role of RF nonlinearity → radial mode-coupling instability
- Impact of space charge on transverse instabilities
  - Experimentally measured rise times can be reproduced in simulations without space charge, but not the intra-bunch motion → to be compared to convective instabilities (A. Burov) and to dispersion integral including detuning (X. Buffat)

# ε<sub>rms</sub> = 10 π mm mrad Time = 2.500 ms 0.06 of max mm mrad 1.00 of max max mrad 1.00 of max max mrad 1.00 of max mr

#### Robert Williamson, RAL



# HB

#### Understanding and characterization of instabilities

- Significant progress in theoretical treatment of longitudinal instabilities
  - Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
  - Generalized threshold due to loss of Landau damping and coupled bunch instabilities
  - Important role of RF nonlinearity → radial mode-coupling instability
- Impact of space charge on transverse instabilities
  - Experimentally measured rise times can be reproduced in simulations without space charge, but not the intra-bunch motion → to be compared to convective instabilities (A. Burov) and to dispersion integral including detuning (X. Buffat)
- Proposal to solve the "inverse stability problem of beam dynamics"
  - Determine distribution function from stability diagram → to be tested with measurements









- Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses, emittance growth and collective instabilities
- Integration & modernization of large body of legacy codes is a path toward faster & more capable code suites



- **Powerful tools** needed for accurate predictions of high intensity-induced beam halo, losses, emittance growth and collective instabilities
- Integration & modernization of large body of legacy codes is a path toward faster & more capable code suites
- CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)
  - Combining features of MAD, Sixtrack, COMBI, pyHEADTAIL, ..., in modular & extensible suite with unified and flexible Python interface, CPU and GPU support
  - Already many users and applications

#### Giovanni ladarola, CERN

















- Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses, emittance growth and collective instabilities
- Integration & modernization of large body of legacy codes is a path toward faster & more capable code suites
- CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)
- Berkeley Lab codes modernized & combined into integrated ecosystem BLAST (LBNL)
  - triple acceleration approach (GPU, Mesh Refinement, Al/ML) with flexible Python frontend & part of larger effort to develop Community Ecosystem based on standardized inputs/outputs

**Chad Mitchell, Berkeley Lab** 









- **Powerful tools** needed for accurate predictions of high intensity-induced beam halo, losses, emittance growth and collective instabilities
- Integration & modernization of large body of legacy codes is a path toward faster & more capable code suites
- CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)
- Berkeley Lab codes modernized & combined into integrated ecosystem BLAST (LBNL)
- New code CISP-GPU w/ many features for end-to-end simulations of HIAF/BRing (IMPCAS)

applied to nonlinear and space charge effects & mitigation; to be embedded into LACCS to provide

high level features for commissioning and online dynamics research





Jie Liu, IMPCAS





- Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses, emittance growth and collective instabilities
- Integration & modernization of large body of legacy codes is a path toward faster & more capable code suites
- CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)
- Berkeley Lab codes modernized & combined into integrated ecosystem BLAST (LBNL)
- New code CISP-GPU w/ many features for end-to-end simulations of HIAF/BRing (IMPCAS)

#### **Trends:**

- Port to GPUs ⇒ more particles, higher resolution, larger systems, longer integration time
- Integration ⇒ more efficient co-development & reuse; more physics at hand to explore all
  possible couplings, not "miss anything", increase realism toward digital twins & open design
  capabilities beyond "what we can compute"; gateway to community ecosystems with standards
- Programmable (Python) frontend ⇒ user-friendliness with shorter learning curve & flexibility for extension, exploration & coupling with Al/ML tools; coupling w/ other codes & experiments



Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)</li>



- Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)</li>
- Demonstrate **space charge compensation by pulsed e-lenses** (FAIR-SIS100)



- Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)</li>
- Demonstrate space charge compensation by pulsed e-lenses (FAIR-SIS100)
- Crab cavities (HL-LHC and EIC)
  - Crab cavity noise and feedback requirements are beyond the state of art → ongoing work

#### Gain of standard RF feedback cannot be increased further



comb filter can reduce impedance effects by acting at the right frequencies (betatron lines)



**Nicolas Mounet, CERN** 



- Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)</li>
- Demonstrate space charge compensation by pulsed e-lenses (FAIR-SIS100)
- Crab cavities (HL-LHC and EIC)
  - Crab cavity noise and feedback requirements are beyond the state of art → ongoing work
- Mitigating e-cloud effects in HL-LHC
  - Situation degraded after long shutdown, limiting the total number of bunches
  - Need to address the root cause → Plasma-assisted CuO reduction and carbon recovery (PE-CVD) OR carbon coating (10-20 nm) by sputtering







- Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)
- Demonstrate space charge compensation by pulsed e-lenses (FAIR-SIS100)
- Crab cavities (HL-LHC and EIC)
  - Crab cavity noise and feedback requirements are beyond the state of art → ongoing work
- Mitigating e-cloud effects in HL-LHC
  - Situation degraded after long shutdown, limiting the total number of bunches
  - Need to address the root cause → Plasma-assisted CuO reduction and carbon recovery (PE-CVD) OR carbon coating (10-20 nm) by sputtering
- Be creative for proposing new accelerator applications for interesting physics cases
  - E.g. "Predominantly Electric "E&m" storage ring with nuclear spin control capability" to study "rear-end" d-p collisions





Richard Talman, Cornell University



# **WGA - Beam dynamics in Rings**

**BIG THANKS** to all the speakers for the excellent and very interesting presentations, and to all participants for their active contribution and fruitful discussion!