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\ Minimizing losses from space charge & resonances

e Compensation of resonances driven by magnet errors is standard practice
o Beam based measurements - in particular for existing machines without detailed error models
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_| 3 \ Minimizing losses from space charge & resonances

e Compensation of resonances driven by magnet errors is standard practice
o Beam based measurements - in particular for existing machines without detailed error models
e New method for identifying magnetic field errors “Deep Lie-Map Networks”
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_| 3 \ Minimizing losses from space charge & resonances

Compensation of resonances driven by magnet errors is standard practice
Beam based measurements - in particular for existing machines without detailed error models

New method for identifying magnetic field errors “Deep Lie-Map Networks”
Space charge structure resonance mitigated by optics optimization (J-PARC MR)
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_| 3 \ Minimizing losses from space charge & resonances

e Compensation of resonances driven by magnet errors is standard practice

o Beam based measurements - in particular for existing machines without detailed error models
e New method for identifying magnetic field errors “Deep Lie-Map Networks”
e Space charge structure resonance mitigated by optics optimization (J-PARC MR)
e Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)
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_| 3 \ Minimizing losses from space charge & resonances

e Compensation of resonances driven by magnet errors is standard practice

o Beam based measurements - in particular for existing machines without detailed error models
New method for identifying magnetic field errors “Deep Lie-Map Networks”
Space charge structure resonance mitigated by optics optimization (J-PARC MR)
Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)
New painting scheme to reduce foil temperature and edge focusing for CSNS-II
(using a pulsed chicane)
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_| 3 \ Minimizing losses from space charge & resonances

e Compensation of resonances driven by magnet errors is standard practice
o Beam based measurements - in particular for existing machines without detailed error models
New method for identifying magnetic field errors “Deep Lie-Map Networks”
Space charge structure resonance mitigated by optics optimization (J-PARC MR)
Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)
New painting scheme to reduce foil temperature and edge focusing for CSNS-II
(using a pulsed chicane)
e Open question from V. Lebedev: what is the maximum achievable space charge tune shift
in real machine with highly super-periodic lattice operating above half-integer?



_| 3 \ Minimizing losses from space charge & resonances

e Compensation of resonances driven by magnet errors is standard practice
o Beam based measurements - in particular for existing machines without detailed error models

New method for identifying magnetic field errors “Deep Lie-Map Networks”

Space charge structure resonance mitigated by optics optimization (J-PARC MR)

Sub-% loss levels achieved operationally with strong space charge (e.g. CSNS)

New painting scheme to reduce foil temperature and edge focusing for CSNS-II

(using a pulsed chicane)

e Open question from V. Lebedev: what is the maximum achievable space charge tune shift
in real machine with highly super-periodic lattice operating above half-integer?

e A. Oeftiger proposed to formulate the efficiency of resonance compensation as “how much
intensity could be gained by resonance compensation for a given amount of
acceptable losses”



_| 3 \ Progress in understanding space charge effects

New 2 particle model with space charge and chromaticity for coasting beam
Shows coupling / exchange between coherent and incoherent motion, also confirmed in
multiparticle simulations as well as indications in measurements (CERN PSB)
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Past studies from I. Karpov did not address this exchange

E. Metral suggested extension to include impedance
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_| 3 \ Progress in understanding space charge effects

New 2 particle model with space charge and chromaticity for coasting beam
Shows coupling / exchange between coherent and incoherent motion, also confirmed in
multiparticle simulations as well as indications in measurements (CERN PSB)

o Past studies from |. Karpov did not address this exchange

o E. Metral suggested extension to include impedance
e Coherent dispersion effect with space charge
o Coherent beam instabilities with dispersion (previously studied for 2D coasting beams)
o In the 3D case, sidebands appear around the envelope modes
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_| 3 \ Studies for characterizing luminosity

e Non-factorizable distributions in LHC van der Meer scans triggered space charge study
o Demonstrated experimentally that space charge induced periodic resonance crossing
generates statistical dependence in transverse planes (CERN PSB)
o Evolution along CERN injector chain and impact on luminosity factorization in LHC to be studied
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_| 3 \ Studies for characterizing luminosity

e Non-factorizable distributions in LHC van der Meer scans triggered space charge study
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Demonstrated experimentally that space charge induced periodic resonance crossing
generates statistical dependence in transverse planes (CERN PSB)
Evolution along CERN injector chain and impact on luminosity factorization in LHC to be studied
e Detailed studies of beam beam effects on luminosity in LHC
BB experiment at the LHC allowed to validate key aspects of the simulation model at the % level
Numerical simulations are invaluable tools to push precisions of LHC luminosity
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_| 3 \ Controlling & mitigating impedance driven instabilities

e Precise control of coherent tune shifts to ensure damper working efficiently in SPS

o Excellent agreement between model and measurement
o So far no strong impact of tune shift on emittance blow-up - to be studied at brightness limit
o Question: Can we use a reactive damper to correct the bunch-by-bunch tune shifts?

Ingrid Mases, CERN
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_| 3 \ Controlling & mitigating impedance driven instabilities

Precise control of coherent tune shifts to ensure damper working efficiently in SPS

°
o Excellent agreement between model and measurement
o So far no strong impact of tune shift on emittance blow-up - to be studied at brightness limit
o Question: Can we use a reactive damper to correct the bunch-by-bunch tune shifts?
e Nice example of curing longitudinal microbunch structure in J-PARC MR
o Impedance reduction of eddy current septa confirmed by improved beam structure
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_| 3 \ Understanding and characterization of instabilities

e Significant progress in theoretical treatment of longitudinal instabilities
o Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
o Generalized threshold due to loss of Landau damping and coupled bunch instabilities
o Important role of RF nonlinearity — radial mode-coupling instability

Ivan Karpov, CERN
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_| 3 \ Understanding and characterization of instabilities

Significant progress in theoretical treatment of longitudinal instabilities
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Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
Generalized threshold due to loss of Landau damping and coupled bunch instabilities
Important role of RF nonlinearity — radial mode-coupling instability

Impact of space charge on transverse instabilities

O

Experimentally measured rise times can be reproduced in simulations without space charge,
but not the intra-bunch motion — to be compared to convective instabilities (A. Burov)

Sebastien Joly, CERN
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_| 3 \ Understanding and characterization of instabilities

e Significant progress in theoretical treatment of longitudinal instabilities
o Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
o Generalized threshold due to loss of Landau damping and coupled bunch instabilities
o Important role of RF nonlinearity — radial mode-coupling instability

e Impact of space charge on transverse instabilities

o Experimentally measured rise times can be reproduced in simulations without space charge,
but not the intra-bunch motion — to be compared to convective instabilities (A. Burov) and to
dispersion integral including detuning (X. Buffat)
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_| 3 \ Understanding and characterization of instabilities

e Significant progress in theoretical treatment of longitudinal instabilities
o Loss of Landau damping threshold (binomial distribution) is inversely proportional to cutoff frequency
o Generalized threshold due to loss of Landau damping and coupled bunch instabilities
o Important role of RF nonlinearity — radial mode-coupling instability
e Impact of space charge on transverse instabilities
o Experimentally measured rise times can be reproduced in simulations without space charge,
but not the intra-bunch motion — to be compared to convective instabilities (A. Burov) and to
dispersion integral including detuning (X. Buffat)
e Proposal to solve the “inverse stability problem of beam dynamics”
o Determine distribution function from stability diagram — to be tested with measurements

Im(g) Vaccaro stability diagrams F)
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_| 3 \ The pursuit for more powerful simulation tools

e Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses,
emittance growth and collective instabilities
e Integration & modernization of large body of legacy codes is a path toward faster & more

capable code suites

19



_| 3 \ The pursuit for more powerful simulation tools

e Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses,
emittance growth and collective instabilities

e Integration & modernization of large body of legacy codes is a path toward faster & more
capable code suites

e CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)

o Combining features of MAD, Sixtrack, COMBI, pyHEADTAIL, ..., in modular & extensible suite with
unified and flexible Python interface, CPU and GPU support

o Already many users and applications Giovanni ladarola. CERN
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_| 3 \ The pursuit for more powerful simulation tools

e Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses,
emittance growth and collective instabilities

e Integration & modernization of large body of legacy codes is a path toward faster & more
capable code suites

e CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)

e Berkeley Lab codes modernized & combined into integrated ecosystem BLAST (LBNL)
o triple acceleration approach (GPU, Mesh Refinement, AI/ML) with flexible Python frontend & part of
larger effort to develop Community Ecosystem based on standardized inputs/outputs

Chad Mitchell, Berkeley Lab

- e em e e e e o e e = - - = = = - - e e e e e e E e e e e o = = o = e -

open Particle Mesh Data
standard

PMD «

Particle-In-Cell
Modeling Interface

picmi

Standa

)
BEAM PLASMA & AccmnArW*N TOOLKIT

21
() Open source: https://blast.Ibl.gov/



https://blast.lbl.gov/

_| 3 \ The pursuit for more powerful simulation tools

e Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses,
emittance growth and collective instabilities
e Integration & modernization of large body of legacy codes is a path toward faster & more

capable code suites

e CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)
Berkeley Lab codes modernized & combined into integrated ecosystem BLAST (LBNL)

e New code CISP-GPU w/ many features for end-to-end simulations of HIAF/BRing (IMPCAS)

o applied to nonlinear and space charge effects & mitigation; to be embedded into LACCS to provide
high level features for commissioning and online dynamics research

Extraction

Nonlinear

Other kicks Jelds

Executable & doc: https://cisp.accsoftware.cn
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Jie Liu, IMPCAS
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_| 3 \ The pursuit for more powerful simulation tools

Powerful tools needed for accurate predictions of high intensity-induced beam halo, losses,
emittance growth and collective instabilities

Integration & modernization of large body of legacy codes is a path toward faster & more
capable code suites

CERN legacy codes upgraded & combined into modern, integrated suite XSuite (CERN)
Berkeley Lab codes modernized & combined into integrated ecosystem BLAST (LBNL)
New code CISP-GPU w/ many features for end-to-end simulations of HIAF/BRing (IMPCAS)

Trends:

Port to GPUs = more particles, higher resolution, larger systems, longer integration time
Integration = more efficient co-development & reuse; more physics at hand to explore all
possible couplings, not “miss anything”, increase realism toward digital twins & open design
capabilities beyond “what we can compute”; gateway to community ecosystems with standards
Programmable (Python) frontend = user-friendliness with shorter learning curve & flexibility

for extension, exploration & coupling with AI/ML tools; coupling w/ other codes & experiments
23



_| 3 \ Challenges ahead

e Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)
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_| 3 \ Challenges ahead

e Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)
e Demonstrate space charge compensation by pulsed e-lenses (FAIR-SIS100)
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_| 3 \ Challenges ahead

e Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)

e Demonstrate space charge compensation by pulsed e-lenses (FAIR-SIS100)
e Crab cavities (HL-LHC and EIC)

o Crab cavity noise and feedback requirements are beyond the state of art — ongoing work

comb filter can reduce impedance effects by

Gain of standard RF feedback cannot be increased further acting at the right frequencies (betatron lines)
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_| 3 \ Challenges ahead

Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)
Demonstrate space charge compensation by pulsed e-lenses (FAIR-SIS100)
Crab cavities (HL-LHC and EIC)

o Crab cavity noise and feedback requirements are beyond the state of art — ongoing work
Mitigating e-cloud effects in HL-LHC

o Situation degraded after long shutdown, limiting the total number of bunches
o Need to address the root cause — Plasma-assisted CuO reduction and
carbon recovery (PE-CVD) OR carbon coating (10-20 nm) by sputtering

T

Sector 78 Highest heat load in machine (581)

P. Costa Pinto

Nicolas Mounet, CERN 27



_| 3 \ Challenges ahead

Loss control at <% level to allow for multi MW beam power (e.g. ISIS II)
Demonstrate space charge compensation by pulsed e-lenses (FAIR-SIS100)

Crab cavities (HL-LHC and EIC)
o Crab cavity noise and feedback requirements are beyond the state of art — ongoing work
Mitigating e-cloud effects in HL-LHC
o Situation degraded after long shutdown, limiting the total number of bunches
o Need to address the root cause — Plasma-assisted CuO reduction and
carbon recovery (PE-CVD) OR carbon coating (10-20 nm) by sputtering
Be creative for proposing new accelerator applications for interesting physics cases
o E.g. “Predominantly Electric “E&m” storage ring with nuclear spin control capability” to study
“rear-end” d-p collisions

Electric field
electrodes

Richard Talman,
Cornell University
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_| 3 \ WGA - Beam dynamics in Rings

BIG THANKS to all the speakers for the
excellent and very interesting presentations,
and to all participants for their active
contribution and fruitful discussion !
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