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II. Theoretical description (longitudinal dynamics)

V. Conclusion
• The aim of this study was to explore the effects of impedance on the Schottky spectrum.

• The longitudinal equation of motion was generalized to include the forces coming from impedance, allowing existing
theoretical reconstruction methods of Schottky spectra to include impedance effects.

• The developed theory was shown to be in good agreement with macro-particle simulations, by correctly reproducing
the amplitude dependent synchrotron tune shift, and the sub-structure of the Schottky spectrum satellites.

• The effect of transverse impedance on the Schottky spectra was also studied through simulation. A transverse broad-
band resonator causes a betatron tune shift and affect the internal structure of the transverse satellites.

Schottky monitors can be used for non-invasive beam diagnostics to estimate various bunch characteristics, such
as tune, chromaticity, bunch profile or synchrotron frequency distribution. However, collective effects, in particular
beam-coupling impedance, can significantly affect Schottky spectra when large bunch charges are involved. In
such conditions, the available interpretation methods are difficult to apply directly to the measured spectra, thus
preventing the extraction of beam and machine parameters, which is possible for lower bunch charges.

Frequencies on all the plots have been shifted from the LHC Schottky harmonic, ℎ = 427725, to the first harmonic.
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Comparison between the exact and approximate expressions of the 
synchrotron frequency as a function of the oscillation amplitude.
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Synchrotron oscillation without external forces

Equation of motion with impedance

Longitudinal broad-band resonator impedance

The equation of motion for
the RF phase 𝜙 of a given
particle is: Exact oscillation frequency

This equation is identical to the one of the non-linear physical pendulum and
solutions and approximations of this equation exist in the literature [5].

Third order approximation Approx. osc. frequency

(non-harmonic motion)

With 𝛀𝟎the nominal synchrotron frequency 
(i.e. the limit synchrotron frequency for 

synchrotron amplitude 𝝓 approaching zero).

Additional external forces, such as the one coming
from beam-coupling impedance, will influence the
longitudinal dynamics of the particle [6].
➔ With additional forces, the previous equation of 
motion becomes:

Beam-coupling impedance

Expanding the sine and exponential function with their Maclaurin series. 
The idea is that, for small oscillation amplitudes, only the first order terms can be 
kept, while for larger amplitudes, higher order terms can be taken into account.

With the notations:
• 𝜂 : slippage factor.
• 𝑝0 : reference momentum.
• ℎ : RF harmonic number.
• መ𝜆 𝑝 ≔ መ𝜆 𝑝𝜔0 : bunch spectrum.
• 𝐶 : accelerator circumference.
• 𝑍∥ 𝑝 ≔ 𝑍∥ 𝑝𝜔0 : longitudinal 

impedance. 
• 𝑒 : elementary charge.
• 𝐼 = 𝑁𝑒/𝑇0: bunch current.
• 𝜏 : time arrival difference between 

a given particle and the 
synchronous particle.

(K: complete elliptic integral of the first kind)

With the coefficients:

General equation of motion 
with impedance

With:
• 𝑅∥ : shunt impedance. 
• 𝜔𝑟 : cut-off frequency.
• 𝑄 : quality factor.

• The developed theory will be applied to the particular case of a longitudinal broad-band resonator.
• The even terms in Eq. (1) are responsible for the synchronous phase shift and it can be shown that,

in the particular case of a broad-band resonator, their contribution can be neglected.

Expanding Eq. (1) up to the third order gives:

Theoretical reconstructions of Schottky spectra, such as the matrix formalism [1] or the Monte Carlo
approach [2-4] assume that the synchrotron frequency distribution is known. When the particles are
moving freely in the potential well of the radio frequency (RF) bucket, an analytical relation between the
amplitude of the synchrotron oscillation and its frequency can be used, allowing these methods to
reconstruct the Schottky spectrum from the synchrotron amplitude distribution. However, this relation
has to be modified when beam-coupling impedance affects the longitudinal dynamics.

Simulated Schottky spectra with (blue) and without (orange) an LHC-like longitudinal broad-band 
resonator and comparison against the adapted theoretical matrix formalism (including impedance).

Comparison of Eq. (2) including impedance terms 𝑍𝑛 up to the 
first (red) and third (green) order, against macro-particle 

simulation (black dots).

• The simulations are conducted with PyHEADTAIL [7] and aim to reproduce the typical conditions of an LHC
proton fill at injection.

• The value of the parameters chosen for the transverse and longitudinal broad-band resonators correspond
to a significant part of the impedance in the LHC that can be modelled as a broad-band resonator.

Approx. osc. frequency

Broad-band resonator: 

The following effects of the longitudinal broad-
band resonator can be observed:

• Shift of the nominal synchrotron frequency. All
the satellites converge toward the central one.
This shift is due to the term 𝑆1 in Eq. (2) and the
new nominal synchrotron frequency is Ω0 𝑆1 .

• The broad-band resonator will reduce the
nominal synchrotron frequency for a machine
operating above transition.

• Amplitude dependent synchrotron frequency
shift due to the higher order terms 𝑆2𝑛+1, 𝑛 ≥ 1.

Nominal synchrotron 
frequency shift

(1)

(2)

−

To study the impact of impedance on such spectra, we perform here time-domain, macro-particle simulations
and apply a semi-analytical method to compute the Schottky signal for various machine and beam conditions,
including those corresponding to typical physics operation at the Large Hadron Collider (LHC). This study provides
preliminary interpretations of how the Schottky spectra are affected by a longitudinal broad-band resonator
(both theoretically and through simulations) and by a transverse broad-band resonator (through simulation).

Longitudinal broad-band resonator impedance

Transverse broad-band resonator impedance

The following effects of a transverse broad-band resonator can be observed:

• The longitudinal band (b) is not affected by the transverse impedance.

• A betatron tune shift is visible on the transverse bands (a and c) (all satellites in a given transverse
sideband are displaced by about 5Hz in the same direction). The direction of the satellite's shift -
toward the right (resp. left) for the lower (resp. upper) sideband – indicates that the broad-band
resonator decreases the betatron tune.

• The satellites are not simply shifted but their internal structure is also affected by impedance, as
visible from the red dashed line in Fig. (d) and (e).

The macro-particle simulation is compared against the theoretical matrix formalism, where the relation
between synchrotron amplitudes and frequencies has been generalized with Eq. (2) to include impedance
effects. A good agreement is obtained between the theory and the simulation.

Simulated Schottky spectra with (blue) and without (orange) an LHC-like transverse broad-band resonator.
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