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Abstract
Analysis of Schottky signals provides rich insights into

the dynamics of a hadron beam, with well-established meth-
ods of deriving the betatron tune and machine chromaticity.
In this contribution, we will report on recent developments
in the analysis and understanding of the signals measured
at the Large Hadron Collider during proton and Pb82+ fills.
A fitting-based technique, where the measured spectra are
iteratively compared with theoretical predictions, will be
presented and compared with the previous methods. As a
step beyond the classical theory of Schottky spectra, certain
signal modifications due to the activity of the LHC machine
systems will be discussed from the perspective of the appli-
cability of the modified signal to the beam diagnostics.

INTRODUCTION
Schottky signals, that is fluctuations of the macroscopic

beam characteristics due to the discrete motion of individ-
ual particles, can provide rich insights into their dynamics
within the bunch. After the pioneering works of Simon van
der Meer [1] and the first experimental observations at the
Intersecting Storage Ring [2], Schottky signals have been
used at many facilities as a source of information on the
betatron tune, momentum spread, transverse emittance and
chromaticity.

In the LHC the Schottky monitor was commis-
sioned in 2011 [3] and underwent a major redesign
during 2014-2015 [4]. Although the quality of the measured
spectra during the Pb82+ runs is in general very good, for
proton beams this is not the case. The signal is particularly
difficult to analyze due to the presence of numerous coherent
spectral components, enhanced by the high intensity of the
proton beams.

The aim of this contribution is to summarize the recent
progress in the analysis of LHC Schottky spectra. As de-
scribed in Refs. [5–7], a new technique was developed, which
allows for longitudinal and transverse beam parameter es-
timation by iterative simulation of fragments of the spec-
trum. A thorough revision of the theory describing Schottky
signals resulted in a formal derivation of certain results,
which were previously based mostly on empirical arguments.
Finally, the analysis of the spectra acquired during LHC
Runs 2 (2015-2018) and 3 (2022) allowed us to understand
how various beam and machine conditions, not included in
the theory of Schottky spectra, affect the beam.

∗ kacper.lasocha@cern.ch

LONGITUDINAL SCHOTTKY SIGNALS
Let us consider a single particle 𝑖, performing synchrotron

oscillations around the ideal synchronous particle that travels
around the synchrotron ring with angular frequency 𝜔0. We
shall assume that the synchrotron motion is sinusoidal and
that the time delay between particle 𝑖 and the synchronous
particle at a given location in the ring is given by:

𝜏𝑖 (𝑡) = 𝜏̂𝑖 sin
(
Ω𝑠𝑖 𝑡 + 𝜑𝑠𝑖

)
,

with synchrotron frequencyΩ𝑠𝑖 , time amplitude 𝜏̂𝑖 and phase
𝜑𝑠𝑖 . The synchrotron frequency is related to the amplitude as
predicted by the theory of the mathematical pendulum [8]:

Ω𝑠 =
𝜋

2K
[
sin

(
ℎ𝑅𝐹𝜔0𝜏̂

2

)]Ω𝑠0 , (1)

where Ω𝑠0 is the nominal synchrotron frequency, ℎ𝑅𝐹𝜔0
is the angular RF frequency and K denotes the complete
elliptic integral of the first kind [9, p. 590].

At a given location in the ring, the current of a single
particle 𝑖 can be described, up to a scaling factor, in the
following way [10]:

𝐼𝑖 (𝑡) ∝
∞∑︁

𝑛=−∞

∞∑︁
𝑝=−∞

𝐽𝑝 (𝑛𝜔0𝜏̂𝑖)𝑒 𝑗 ( [𝑛𝜔0+𝑝Ω𝑠𝑖
]𝑡+𝑝𝜑𝑠𝑖

) , (2)

where 𝐽𝑝 denotes the Bessel function of the first kind.
The Power Spectral Density (PSD) of such a signal, as

visible in Fig. 1, consists of a series of so-called synchrotron
lines, symmetrically located around each harmonic of the
revolution frequency 𝜔0. The distance between consecutive
satellites is equal to the particle’s synchrotron frequency.

Figure 1: Simulated single particle longitudinal LHC Schot-
tky spectrum.

The intensity signal of the whole bunch will preserve
a similar structure but with a few significant differences.
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Individual particles differ with regard to their synchrotron
amplitudes and frequencies. As a result, synchrotron satel-
lites spread into wider bands. As can be seen in Fig. 2, they
have a triangular shape with sub-peaks, corresponding to
the combined effect of the distribution of synchrotron fre-
quencies and the extrema of the respective Bessel functions.
The relative power of synchrotron satellites changes as well.
Assuming that the synchrotron phases 𝜑𝑠𝑖 are independent
and uniformly distributed, the central 𝑝 = 0 harmonic has
significantly larger power than all the other ones. The rea-
son behind this is twofold. Due to lack of 𝑝Ω𝑠𝑖 term in
Eq. (2) the whole power of the 𝑝 = 0 satellite is localized
in a narrow frequency range. In addition, the random phase
component 𝑝𝜑𝑠𝑖 does not enter into the exponent of the term
corresponding to the central satellite. As a result, at low
harmonics of the revolution frequency, these terms add up
coherently and the cumulative power is proportional to the
square of the bunch intensity, whereas the power of other
satellites is proportional only to the intensity [11].

Figure 2: Longitudinal LHC Schottky spectrum.

In Fig. 3 we can see an example of a situation in which
the particles’ synchrotron motion is to some extent coherent.
Immediately following the longitudinal blowup [12], the
power of most of the satellites increases significantly. As
time passes, and the filamentation of the longitudinal phase
space progresses, the coherency gradually weakens. The
satellites mostly affected by coherence effects are the central
ones, due to the low integer multiple of the phase factor
𝑝𝜑𝑠𝑖 .

TRANSVERSE SCHOTTKY SIGNALS
Let us now assume that, in addition to the longitudinal

motion, the particle also performs betatron oscillations, with
the resulting transverse displacement given by

𝑥𝑖 (𝑡) = 𝑥𝑖 cos
[
𝜙𝛽𝑖 (𝑡)

]
,

where 𝑥𝑖 is the amplitude of the betatron motion, and the
phase term is given by

𝜙𝛽𝑖 (𝑡) = 𝑄𝜔0𝑡 +
𝑄𝑖𝜔0
Ω𝑠𝑖

sin
(
Ω𝑠𝑖 𝑡 + 𝜑𝑠𝑖

)
+ 𝜑𝛽𝑖 . (3)

The first term of Eq. (3) corresponds to the nominal betatron
tune 𝑄, the second introduces a tune modulation due to
chromaticity, and the last one is an initial betatron phase 𝜑𝛽𝑖 .

Figure 3: Effect of longitudinal blowup on Schottky spec-
trum. Above: spectrogram. Below: averaged spectrum.

As a result of the betatron motion, two additional spec-
tral structures emerge in the Schottky signal. These are
described, up to a scaling factor, by [6]:

𝑇±
𝑖 (𝑡) ∝

∞∑︁
𝑛,𝑝=−∞

𝐽𝑝

(
𝜒±
𝜏̂𝑖 ,𝑛∓𝑄𝐼

)
𝑒 𝑗 ( [ (𝑛±𝑄𝐹 )𝜔0+𝑝Ω𝑠𝑖 ]𝑡+𝜑𝛽𝑖

+𝑝𝜑𝑠𝑖 ) ,

(4)

with

𝜒±
𝜏̂𝑖 ,𝑛

=

(
𝑛𝜏𝑖 ±

𝑄𝑖

Ω𝑠𝑖

)
𝜔0 = (𝑛𝜂 ±𝑄𝜉) 𝜔0𝑝𝑖

Ω𝑠𝑖 𝑝0
,

where 𝜂 is the slip factor, 𝑝𝑖/𝑝0 is the relative momentum
deviation of particle 𝑖, and 𝑄𝐼 , 𝑄𝐹 denote the integer and
fractional tune respectively.

The PSD of the so-called transverse sidebands, as can be
observed in Fig. 4, consists of two spectral clusters, shifted
with respect to the longitudinal band by a distance corre-
sponding to the betatron frequency. Both bands resemble
the PSD of the longitudinal intensity signal. An important
difference is that, as individual particles perform betatron
oscillation in an independent way, the additional betatron
phase component 𝜑𝛽𝑖 introduces incoherence and reduces
the power of the central satellite. In addition, for non-zero
chromaticity the argument of the Bessel function is different
for both bands which leads to a different band shape.

Figure 4: Transverse Schottky spectrum.
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MATRIX FORMALISM
As shown in Refs. [5, 6], assuming no coherence in the

betatron nor synchrotron motion and excluding the central
longitudinal synchrotron satellite, the PSD of multiparticle
Schottky signal is equal to the sum of single particle PSDs.

For the longitudinal Schottky spectrum around the se-
lected harmonic 𝑛 of the revolution frequency, we have:

𝑃 (𝜔) ∝
𝑁∑︁
𝑖=1

∞∑︁
𝑝=−∞

𝐽2
𝑝 (𝑛𝜔0𝜏𝑖) 𝛿(𝜔 − 𝑛𝜔0 − 𝑝Ω𝑠𝑖 ),

where 𝛿(·) is a Dirac delta and 𝑁 is the number of particles.
The PSD of the transverse Schottky signals is described

by the expression:

𝑃±
𝑇 (𝜔) = 𝑥̂

𝑁∑︁
𝑖=1

𝑃±
𝑇 (𝜔, 𝜏𝑖),

where 𝑥̂ is a common scaling factor, resulting from the as-
sumption that the amplitudes of betatron and synchrotron

motion are independent quantities, while 𝑃±
𝑇
(𝜔, 𝜏𝑖) is the

single particle contribution given by

𝑃±
𝑇 (𝜔, 𝜏𝑖) =

∞∑︁
𝑝=−∞

𝐽2
𝑝

(
𝜒±
𝜏𝑖 ,ℎ∓𝑄𝐼

)
𝛿[𝜔−(ℎ±𝑄𝐹)𝜔0−𝑝Ω𝑠 (𝜏𝑖)] .

Analyzing the expressions above, one can note that the
only quantities specific to individual particles are Ω𝑠𝑖 and 𝜏̂𝑖 .
In addition, according to Eq. (1), there is a one-to-one rela-
tionship between these quantities. The only other parameters
needed to uniquely determine the Schottky spectrum are the
betatron tune 𝑄, the nominal synchrotron frequency Ω𝑠0 ,
and the chromaticity 𝑄𝜉. Taking the discrete distribution of
synchrotron amplitudes 𝑔(𝜏𝑗 ) among all the particles, and
assuming that the single particle contributions add up in-
coherently at all considered frequencies, one can write the
Discrete Fourier Transform (DFT) of the total multiparticle
Schottky signals 𝑃𝐷𝐹𝑇 and 𝑃

𝑇,±
𝐷𝐹𝑇

in matrix form:


𝑃𝐷𝐹𝑇 (𝜔1, 𝜏1,Ω𝑠0 ) · · · 𝑃𝐷𝐹𝑇 (𝜔1, 𝜏𝑛,Ω𝑠0 )
𝑃𝐷𝐹𝑇 (𝜔2, 𝜏1,Ω𝑠0 ) · · · 𝑃𝐷𝐹𝑇 (𝜔2, 𝜏𝑛,Ω𝑠0 )

...
. . .

...

𝑃𝐷𝐹𝑇 (𝜔𝑚, 𝜏1,Ω𝑠0 ) · · · 𝑃𝐷𝐹𝑇 (𝜔𝑚, 𝜏𝑛,Ω𝑠0 )

︸                                                            ︷︷                                                            ︸
M(Ω𝑠0 )

·


𝑔̃(𝜏1)
𝑔̃(𝜏2)
...

𝑔̃(𝜏𝑛)

︸   ︷︷   ︸
A

=


𝑃𝐷𝐹𝑇 (𝜔1)
𝑃𝐷𝐹𝑇 (𝜔2)

...

𝑃𝐷𝐹𝑇 (𝜔𝑚)

︸           ︷︷           ︸
𝑃𝐷𝐹𝑇

, (5)

and 
𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔1, 𝜏1,Ω𝑠0 , 𝑄, 𝑄𝜉) · · · 𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔1, 𝜏𝑛,Ω𝑠0 , 𝑄, 𝑄𝜉)
𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔2, 𝜏1,Ω𝑠0 , 𝑄, 𝑄𝜉) · · · 𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔2, 𝜏𝑛,Ω𝑠0 , 𝑄, 𝑄𝜉)
...

. . .
...

𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔𝑚, 𝜏1,Ω𝑠0 , 𝑄, 𝑄𝜉) · · · 𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔𝑚, 𝜏𝑛,Ω𝑠0 , 𝑄, 𝑄𝜉)

︸                                                                                ︷︷                                                                                ︸
M(Ω𝑠0 ,𝑄,𝑄𝜉 )

·


𝑔̃(𝜏1)
𝑔̃(𝜏2)
...

𝑔̃(𝜏𝑛)

︸   ︷︷   ︸
A

=


𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔1)
𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔2)
...

𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔𝑚)

︸           ︷︷           ︸
𝑃
𝑇,±
𝐷𝐹𝑇

, (6)

where the single particle DFTs 𝑃𝐷𝐹𝑇 (𝜔𝑖 , 𝜏𝑗 ,Ω𝑠0 ) and
𝑃
𝑇,±
𝐷𝐹𝑇

(𝜔𝑖 , 𝜏𝑗 ,Ω𝑠0 , 𝑄, 𝑄𝜉) can be calculated directly from
Eqs. (2) and (4).

The number of considered amplitudes 𝜏1, . . . , 𝜏𝑛 is a trade-
off between the time-complexity and discretisation error. For
the analysis of the LHC Schottky spectra it was chosen to
take 50 amplitudes uniformly distributed over the whole RF
bucket.

SCHOTTKY SIGNALS IN THE LHC
The LHC Schottky monitors [4] probe the beam field us-

ing four pairs of symmetrically arranged, approximately 1 m
long slotted waveguides, one pair per beam and per plane.
These pickups are sensitive to the beam field in approxi-
mately a 200 MHz bandwidth around the central frequency
of 4.81 GHz. The choice of this frequency is a tradeoff

between minimizing the strength of the central longitudi-
nal satellite and having a measurable width of longitudi-
nal and transverse sidebands while ensuring no overlap
between them. Additional suppression of the strong lon-
gitudinal signal is obtained by subtracting the outputs of
both waveguides with the use of a hybrid. The fast gate-
switch enables observation of any selected subset of bunches.
During standard operation single bunches are observed.
After gating, the bunch signal is sequentially filtered and
downconverted, so that the final digitized output is essen-
tially a 15 kHz slice of the original spectrum around the
427725 × 𝜔0/2𝜋 ≈ 4.81 GHz, mixed down to the LHC rev-
olution frequency 𝜔0/2𝜋 ≈ 11.2455 kHz.

The sampling frequency, locked to the RF frequency
to avoid drifts during ramps and orbit corrections, is set
to 4×𝜔0/2𝜋. The DFT of the last 216 = 65536 points is cal-
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culated every second, what results in the spectral resolution
of approximately 0.69 Hz.

Although the LHC Schottky system is by design a trans-
verse monitor, imperfections of the delta hybrid as well as
the very strong intensity signal lead to the inevitable pres-
ence of the longitudinal band next to the measured transverse
sidebands.

As discussed in Ref. [11], the theory of Schottky spectra
presented in the previous sections describes only an expected,
probability space-averaged power of Schottky signals. This
can be approximated with time-averaged instantaneous spec-
tra. To analyze LHC Schottky spectra, a simple moving
average of consecutive 100 spectra is taken.

SPECTRA FITTING PROCEDURE
The main benefit of the matrix formalism, described by

Eqs. (5) and (6), is the fact that it allows for the efficient sim-
ulation of Schottky signals without the need of performing
time-consuming and Monte-Carlo-based multiparticle simu-
lations. In this way the impact of different beam parameters
on Schottky spectra can be studied and visualised.

From the perspective of beam diagnostics, one can adopt
the complementary approach, i. e., given a measured Schot-
tky spectrum 𝑃

𝑒𝑥𝑝

𝐷𝐹𝑇
, one can look for a set of beam and

machine parameters that allows to reproduce the measure-
ment. To achieve that, we define a cost function:

𝐶 (Ω𝑠0 ,A, 𝑄, 𝑄𝜉) = |M(Ω𝑠0 , 𝑄, 𝑄𝜉) · A − 𝑃
𝑒𝑥𝑝

𝐷𝐹𝑇
|2, (7)

where | · | denotes the standard Euclidean norm. The cost
function expresses a distance between the simulated spec-
trum, and the measured one. To minimize it, one can employ
an optimizing routine, such as the L-BFGS-B [13] or a dif-
ferential evolution algorithm [14].

The number of arguments in the cost function, and there-
fore the number of parameters determined in the optimizing
procedure, can vary. For example, when analyzing the lon-
gitudinal part of the Schottky spectra, one does not take the
betatron tune and the chromaticity into account. In addition,
if certain parameters are already known in advance (e. g. mea-
sured directly or indirectly with another instrument), they
can be used in the cost function as constant parameters, re-
ducing the number of variables to be determined.

In principle, the synchrotron amplitude distribution A,
being a distribution, consists of a bigger number of inde-
pendent parameters. As previously discussed, in the case
of the LHC we consider a discrete 50-point distribution. To
reduce this number of free parameters, a regularisation of
the synchrotron amplitude distribution is taken. Based on ex-
perimental observations, it is assumed that the synchrotron
amplitude distribution follows the Rice distribution [15] and
therefore is described by only two parameters.

One of the best features of the matrix-based spectrum
fitting procedure is the fact that it imposes no restrictions on
the frequencies taken in Eqs. (5) and (6). If for some reason,
e. g. due to the local distortions of the Schottky spectrum, it

is desired to exclude certain frequencies from the analysis,
one can freely do so.

SYNCHROTRON FREQUENCY
The nominal synchrotron frequency is a parameter which

in principle can be calculated with a simple formula [16]:

Ω𝑠0 =

√︄
𝑞ℎ𝑅𝐹𝜔0𝜂𝑉̂ cos(𝜙𝑠)

2𝜋𝑅𝑝0
, (8)

where 𝑞 is the particle charge, 𝑉̂ is the RF voltage, 𝜙𝑠 is the
RF phase of the synchronous particle and 𝑅 is the radius of
the synchrotron ring.

If, however, some beam and machine parameters appear-
ing in Eq. (8) are known only with a limited precision, as
is the case for the effective LHC RF voltage and slip fac-
tor [17], these uncertainties will propagate to the estimate
of the nominal synchrotron frequency.

An alternative way to calculate the nominal synchrotron
frequency is to analyze the longitudinal Schottky spectrum.
As discussed previously, the synchrotron frequency is re-
flected in the distance between the following Bessel satel-
lites of the longitudinal and transverse sidebands. Having
an experimental Schottky spectrum, the spectrum fitting
procedure based on minimization of the cost function

𝐶 (Ω𝑠0 ,A) = |M̃ (Ω𝑠0 ) · A − 𝑃
𝑒𝑥𝑝

𝐷𝐹𝑇
|2 (9)

determines the simulation parameters that most closely
match the measurement. The results of such minimization,
using a differential evolution algorithm, are presented in
Fig. 5.

Figure 5: Measured and fitted longitudinal Schottky spectra.

As will be explained in the next section, for the overwhelm-
ing majority of the time during standard LHC operation, the
synchrotron amplitude distribution can be calculated based
on the longitudinal bunch profile. In such a case, the nomi-
nal synchrotron frequency is the only parameter that needs
to be determined in Eq. (9), and potentially time-consuming
minimizing routines can be replaced with a simple scan over
the plausible values of the synchrotron frequency.

LONGITUDINAL BUNCH PROFILES
Under stationary conditions, assuming a uniform distri-

bution of synchrotron phases among the particles, the syn-
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chrotron amplitude distribution 𝑔(𝜏̂) is related to the longi-
tudinal bunch profile B(𝜏) by the following expression [5]:

B(𝜏) =
∫ ∞

|𝜏 |

𝑔(𝜏̂)
𝜋
√
𝜏̂2 − 𝜏2

d𝜏̂. (10)

As a consequence, determining the synchrotron amplitude
distribution, for example by minimizing the cost function
(Eq. (9)), is equivalent to deriving the longitudinal bunch
profile.

An example of such a measurement is presented in Fig. 6
where synchrotron amplitude distributions, determined with
a fitting procedure, were subsequently transformed into cor-
responding bunch profiles according to Eq. (10). As the
same longitudinal profile should be derived from both ver-
tical and horizontal Schottky monitors, estimates based on
both devices were compared with the independent measure-
ment with the Wall Current Monitor (WCM) [18].

Figure 6: Longitudinal bunch profiles measured with WCM
and estimated based on Schottky spectra. Averages and 1-𝜎
error margins taken over a time interval of 100 seconds.

BETATRON TUNE
The measurements of the betatron tune are based on the

analysis of the transverse parts of the spectrum. The theory
predicts that the distance between the central satellites in
the two transverse sidebands will be equal to 2𝑄𝐹𝜔0. The
determination of the central satellites can be achieved using
the Mirrored Difference (MD) algorithm, which is based
on the fact that the central satellite is the axis of symmetry
of the whole sideband. All frequency bins of the sideband
are scanned, and in each bin the following cost function is
calculated:

𝐶𝑀𝐷 (𝑘) =
𝑖=𝑀∑︁
𝑖=1

��𝑃±
𝑇 (𝜔𝑘−𝑖) − 𝑃±

𝑇 (𝜔𝑘+𝑖)
�� ,

where 𝑀 is a predefined constant. The value of 𝑘 which
minimizes the cost function corresponds to the frequency
bin of the sideband center. In case a higher tune resolu-
tion is desired, values between the frequency bins can be
interpolated.

An example of the tune derived in such a way is presented
in Fig. 7. As we can see, the MD algorithm can be used to
derive betatron tunes of individual bunches with a precision
higher than 10−4.

Figure 7: Betatron tune estimated using MD algorithm.

CHROMATICITY
Whereas all previously mentioned beam characteristics

can also be derived using other LHC diagnostic instruments,
Schottky signal analysis remains the only technique with a
potential for non-invasive measurements of chromaticity at
high beam energies and intensities.

The information on the chromaticity is imprinted in the
differences between the widths of transverse Schottky side-
bands. It can be shown [6] that, in LHC conditions, and if
one takes Δ 𝑓± to be the root-mean-square (RMS) width of
respectively the upper (+) and lower (-) transverse sidebands,
the chromaticity is given by the following expression:

𝑄𝜉 = −𝜂
(
𝑛
Δ 𝑓− − Δ 𝑓+
Δ 𝑓− + Δ 𝑓+

−𝑄𝐼

)
. (11)

Estimating chromaticity using Eq. (11) is only possible
in stationary conditions, i. e., whenever particle motion is
purely incoherent. In the presence of local spectrum distor-
tions, induced e. g. due to the residual coherent intra-bunch
motion, Eq. (11) cannot be directly used. In these cases
the modified shape of the sidebands affects the RMS width
estimation and deteriorates the chromaticity estimate. In
these cases, the spectrum fitting procedure can be applied.
As previously discussed, frequency bins containing local
distortions can be excluded from the analysis and only the
remaining frequency bins would be fitted, as shown Fig. 8.

Figure 8: Measured and fitted lower transverse Schottky
sideband, with coherent satellites excluded from the analysis.

The estimated values of chromaticity are shown in Fig. 9.
The result is in agreement with the prior reference mea-
surement using the invasive RF modulation technique [19],
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whereas the direct application of Eq. (11) would result in an
error by over 4 units.

Figure 9: Results of chromaticity measurements using spec-
tra fitting and other techniques.

The overall analysis procedure can be implemented in
such a way that, by the time the transverse sidebands are
to be fitted, chromaticity is the only unknown argument of
the cost function (Eq. (7)). In this case, chromaticity can be
estimated by scanning a grid of values, within a plausible
range, and looking for the minimum of the cost function.

LIMITATIONS
The existing theory of Schottky spectra and the developed

diagnostic techniques cannot be applied universally for all
beam conditions. Assumptions on the form of single particle
motion, the absence of betatron and synchrotron coherence,
and the necessity of relatively long spectral averaging put
strong limitations on the analysis potential. While the co-
herence in particles’ motion can be often mitigated with the
spectra fitting procedure, other conditions prevent the Schot-
tky signals acquired during the big part of the LHC operation
from being analyzed with the discussed techniques.

Foremost, the averaged Schottky spectra remain obscure
when beam and machine parameters change. This problem
can be illustrated by the tune shift example shown in Fig. 10.
As the spectrogram remains readable, the application of im-
age recognition algorithms, that take the whole spectogram
as input, might be a good mitigation technique.

Figure 10: Spectrogram and averaged Schottky spectrum
during the tune shift.

Another limitation is the presence of conditions that are
not yet described by the theory of Schottky spectra. A promi-
nent example is the effect of octupoles, acting on the beam
during most LHC fills, shown in Fig. 11. Unless the octupole
current is small compared to the beam energy, transverse
satellites are smeared and shifted due to the convolution with
the octupole-induced betatron tune spread.

Figure 11: Spectrogram and averaged Schottky spectrum
during the octupole magnet ramp.

CONCLUSION
Recent developments in the understanding and analysis

of the LHC Schottky spectra have shown their potential to
estimate a rich variety of beam and machine characteristics.
At the same time, due to the high sensitivity of Schottky
signals, individual parameters can be hard to extract from
the observed spectra, especially if the particles’ dynamics
are governed by effects not included in the so-far developed
theory.

Within the next days, Schottky spectra of both planes and
both LHC beams will start being acquired and analyzed con-
tinuously. The analysis pipeline begins with longitudinal
profiles being acquired by the WCM system and transformed
into a distribution of synchrotron amplitudes. Then, the syn-
chrotron frequency is determined using the spectra fitting
technique. In parallel, the MD algorithm determines the beta-
tron tune. Finally, the chromaticity is estimated by scanning
different values and finding the best match for the transverse
sidebands of the spectrum. To automatically exclude fre-
quency bins containing coherent components, it is verified if
the power in a given bin is in agreement with the statistical
properties of the Schottky spectra, described in Ref. [11].

Future efforts will be put towards expanding the existing
theory of Schottky spectra. Due to the complexity of its
analytical description, a particularly important part of this
research is based on macroparticle simulations [20], with
special emphasis on the beam impedance [21, 22].
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