WEA2I —  Invited Presentations WG A   (11-Oct-23   11:05—12:55)
Paper Title Page
WEA2I1 Compensation of Third-order Resonances in the High Intensity Regime 215
 
  • C.E. Gonzalez-Ortiz
    MSU, East Lansing, Michigan, USA
  • R. Ainsworth
    Fermilab, Batavia, Illinois, USA
  • P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
 
  As the Fermilab Accelerator Complex enters the high-intensity era, the Recycler Ring (RR) needs to mitigate the detrimental effect of third-order resonance crossing. Third-order resonance lines can be compensated to first order by cancelling out the global Resonance Driving Terms (RDTs) using the response matrix method. This compensation scheme has been proven to work at low intensities, i.e., in the single-particle regime. In order to evaluate the effectiveness of this compensation scheme at higher intensities, this study looks at dynamic and static tune scans, with and without resonance compensation, and different space charge tune shifts. Special care was taken in order to disentangle effects from space charge tune shift, structure resonances and space charge driven resonances.  
slides icon Slides WEA2I1 [6.714 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA2I1  
About • Received ※ 02 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 09 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2I2 Space Charge Induced Resonances and Suppression in J-PARC MR 222
 
  • T. Yasui
    KEK, Tokai, Ibaraki, Japan
 
  In the main ring synchrotron (MR) of Japan Proton Accelerator Research Complex (J-PARC), space charge induced resonances are the cause of beam losses. Although we have scanned the tunes to minimize beam losses, it has been difficult to completely avoid high order structure resonances because the MR has only three super-periodicities. In the present settings for the neutrino operation, we identified that the space charge induced resonance 8ny=171 is the main source of beam losses, except for random resonances. We found that this resonance can be suppressed by beam optics modification while maintaining the tune. In this talk, we present the theoretical, simulation, and experimental results showing the advantages of the new beam optics and the reasons for them.  
slides icon Slides WEA2I2 [6.189 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA2I2  
About • Received ※ 07 November 2023 — Accepted ※ 18 November 2023 — Issued ※ 29 November 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)