Paper | Title | Other Keywords | Page |
---|---|---|---|
TUC1C1 | Effect of Three-Dimensional Quadrupole Magnet Model on Beam Dynamics in the FODO Line at the Spallation Neutron Source Beam Test Facility | quadrupole, simulation, neutron, permanent-magnet | 65 |
|
|||
Funding: Supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Authored by UT- Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The research program at the Spallation Neutron Source (SNS) Beam Test Facility (BTF) focuses on improving accelerator model accuracy. This study explores the effect of two different models of permanent magnet quadrupoles, which comprise a 9.5-cell FODO line in the BTF. The more realistic model includes all higher-order terms, while the simple, in use model, is a perfect quadrupole. Particular attention is paid to high-amplitude particles to understand how the choice of quadrupole model will affect beam halo distributions. In this paper, we compare particle tracking through a FODO line that contains only linear terms - a perfect quadrupole model - to a full 3D model. |
|||
Slides TUC1C1 [1.705 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC1C1 | ||
About • | Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 27 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBP43 | Intensity Effects in a Chain of Muon RCSs | cavity, acceleration, wakefield, collider | 579 |
|
|||
Funding: Funded by the European Union under Grant Agreement n.101094300 The muon collider offers an attractive path to a compact, multi-TeV lepton collider. However, the short muon lifetime leads to stringent requirements on the fast energy increase. While extreme energy gains in the order of several GeV per turn are crucial for a high elevated muon survival rate, ultra-short and intense bunches are needed to achieve large luminosity. The longitudinal beam dynamics of a chain of rapid cycling synchrotrons (RCS) for acceleration from around 60 GeV to several TeV is being investigated in the framework of the International Muon Collider Collaboration. Each RCS must have a distributed radio-frequency (RF) system with several hundred RF stations to establish stable synchrotron motion. In this contribution, the beam-induced voltage in each RCS is studied, assuming a single high-intensity bunch per beam in each direction and ILC-like 1.3 GHz accelerating structures. The impact of single- and multi-turn wakefields on longitudinal stability and RF power requirements is analysed with particle tracking simulations. Special attention is moreover paid to the beam power deposited into the higher-order modes of the RF cavities. |
|||
Poster THBP43 [1.345 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP43 | ||
About • | Received ※ 29 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||