Keyword: beam-transport
Paper Title Other Keywords Page
THA2C1 Measurement of Transverse Beam Emittance for a High-Intensity Proton Injector solenoid, space-charge, emittance, simulation 363
 
  • D.-H. Kim, H.S. Kim, H.-J. Kwon, S. Lee
    KOMAC, KAERI, Gyeongju, Republic of Korea
 
  Funding: This work was supported through "KOMAC operation fund" of KAERI by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (KAERI-524320-23)
We propose a simple and fast diagnostics method for the transverse beam emittance using a solenoid magnet. The solenoid scan data is analyzed employing the hard edge solenoid model and thick lens approximation. The analytical method is validated by beam dynamics simulations with varying input beam parameters. To address the space charge effect in a simplified manner, the space charge force is linearized and incorporated between segments of the drift-solenoid transfer matrix. For intense hadron injectors with higher beam current accounting for space charge prove to be more effective for correction. Building upon the method validated through beam simulation, experiments are conducted on space charge compensation at the beam test stand in the Korea Multipurpose Accelerator Complex (KOMAC). In a constant ion source operating condition, beam emittance is measured from solenoid scans while varying the flow rate of krypton gas injection. Notable shifts are observed in transverse beam emittance attributable to krypton gas injection, implying some optimal gas flow rate for mitigating emittance growth.
 
slides icon Slides THA2C1 [3.438 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA2C1  
About • Received ※ 23 October 2023 — Revised ※ 28 October 2023 — Accepted ※ 30 October 2023 — Issued ※ 20 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)