Author: Udongwo, S.
Paper Title Page
THBP43 Intensity Effects in a Chain of Muon RCSs 579
 
  • F. Batsch, D. Amorim, H. Damerau, A. Grudiev, I. Karpov, E. Métral, D. Schulte
    CERN, Meyrin, Switzerland
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • S. Udongwo
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Funding: Funded by the European Union under Grant Agreement n.101094300
The muon collider offers an attractive path to a compact, multi-TeV lepton collider. However, the short muon lifetime leads to stringent requirements on the fast energy increase. While extreme energy gains in the order of several GeV per turn are crucial for a high elevated muon survival rate, ultra-short and intense bunches are needed to achieve large luminosity. The longitudinal beam dynamics of a chain of rapid cycling synchrotrons (RCS) for acceleration from around 60 GeV to several TeV is being investigated in the framework of the International Muon Collider Collaboration. Each RCS must have a distributed radio-frequency (RF) system with several hundred RF stations to establish stable synchrotron motion. In this contribution, the beam-induced voltage in each RCS is studied, assuming a single high-intensity bunch per beam in each direction and ILC-like 1.3 GHz accelerating structures. The impact of single- and multi-turn wakefields on longitudinal stability and RF power requirements is analysed with particle tracking simulations. Special attention is moreover paid to the beam power deposited into the higher-order modes of the RF cavities.
 
poster icon Poster THBP43 [1.345 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP43  
About • Received ※ 29 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)