Paper | Title | Page |
---|---|---|
THBP48 | Latest Advances in Targetry Systems at CERN and Exciting Avenues for Future Endeavours | 599 |
|
||
CERN’s accelerator complex offers diverse target systems for a range of scientific pursuits, including varying beam energies, intensities, pulse lengths, and objectives. Future high-intensity fixed target experiments aim to advance this field further. This contribution highlights upgraded operational target systems, enhancing CERN’s physics endeavours. One example is the third-generation nTOF spallation neutron target, using a nitrogen-cooled pure lead system impacted by a 20 GeV/c proton beam. Another focuses on recent antiproton production target upgrades, with a high-intensity 26 GeV/c beam colliding with a narrow-air-cooled iridium target. Looking ahead, new high-power target systems are planned. One aims to discover hidden particles using a 350-kW high-Z production target, while another enhances kaon physics through a 100 kW low-Z target. This article provides an overview of current target systems at CERN, detailing beam-intercepting devices and engineering aspects. It also previews upcoming facilities that could soon be implemented at CERN. | ||
Poster THBP48 [63.760 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP48 | |
About • | Received ※ 07 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 10 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEC1C2 | Challenges of Target and Irradiation Diagnostics of the IFMIF-DONES Facility | 210 |
|
||
Funding: This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme Grant Agreement No 101052200 EUROfusion IFMIF-DONES will be a first-class scientific infrastructure consisting of an accelerator-driven neutron source delivering 1e17 n/s with a broad peak at 14 MeV. Such neutron flux will be created by impinging a continuous wave 125 mA, 40 MeV, 5 MW deuteron beam onto a liquid Li jet target, circulating at 15 m/s. Material specimens subjected to neutron irradiation will be placed a few millimeters downstream. Some of the most challenging technological aspects of the facility are the Diagnostics to monitor the Li jet, beam parameters on target, and characterization of the neutron irradiation field, with transversal implications in the scientific exploitation, machine protection and safety. Multiple solutions are foreseen, considering among others, Li jet thickness measurement methods based on optical metrology and millimeter-wave radar techniques, Li electromagnetic flowmeters, beam footprint measurements based on residual gas excitation, online neutron detectors such as SPNDs and micro-fission chambers, as well as offline neutron fluence measurements by activation foils or spheres. This contribution provides an overview of these aspects and the associated R&D activities. |
||
Slides WEC1C2 [4.676 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1C2 | |
About • | Received ※ 11 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |