Author: Potdevin, J.M.B.
Paper Title Page
THBP16 Emittance Growth From Electron Clouds Forming in the LHC Arc Quadrupoles 487
 
  • K. Paraschou, H. Bartosik, L. Deniau, G. Iadarola, E.H. Maclean, L. Mether, Y. Papaphilippou, G. Rumolo, R. Tomás García
    CERN, Meyrin, Switzerland
  • T. Pieloni, J.M.B. Potdevin
    EPFL, Lausanne, Switzerland
 
  Operation of the Large Hadron Collider with proton bunches spaced 25 ns apart favours the formation of electron clouds. In fact, a slow emittance growth is observed in proton bunches at injection energy (450 GeV), showing a bunch-by-bunch signature that is compatible with electron cloud effects. The study of these effects is particularly relevant in view of the planned HL-LHC upgrade, which relies on significantly increased beam intensity and brightness. Particle tracking simulations that take into account both electron cloud effects and the non-linear magnetic fields of the lattice suggest that the electron clouds forming in the arc quadrupoles are responsible for the observed degradation. In this work, the simulation results are studied to gain insight into the mechanism which drives the slow emittance growth. Finally, it is discussed how optimising the optics of the lattice can allow the mitigation of such effects.  
poster icon Poster THBP16 [3.432 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP16  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)