Author: Lu, X.H.
Paper Title Page
MOA1I3 Intense Beam Issues in CSNS Accelerator Beam Commissioning 16
 
  • L. Huang, H.Y. Liu, X.H. Lu, X.B. Luo, J. Peng, L. Rao
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, J. Chen, M.Y. Huang, Y. Li, Z.P. Li, S. Wang
    IHEP, Beijing, People’s Republic of China
  • S.Y. Xu
    DNSC, Dongguan, People’s Republic of China
 
  The China Spallation Neutron Source (CSNS) consists of an 80 MeV H⁻ Linac, a 1.6 GeV Rapid Cycling Synchrotron (RCS), beam transport lines, a target station, and three spectrometers. The CSNS design beam power is 100 kW, with the capability to upgrade to 500 kW. In August 2018, CSNS was officially opened to domestic and international users. By February 2020, the beam power had reached 100 kW, and through improvements such as adding harmonic cavities, the beam power was increased to 140 kW. During the beam commissioning process, the beam loss caused by space charge effects was the most significant factor limiting the increase in beam power. Additionally, unexpected collective effects were observed, including coherent oscillations of the bunches, after the beam power reached 50 kW. Through a series of measures, the space charge effects and collective instabilities causing beam loss were effectively controlled. This paper mainly introduces the strong beam effects discovered during the beam commissioning at CSNS and their suppression methods. It also briefly discusses the research on beam space charge effects and collective effects in the beam dynamics design of CSNS-II project.  
slides icon Slides MOA1I3 [8.597 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA1I3  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)