Author: Gnacadja, E.
Paper Title Page
THBP36 Study of the Performance of the CERN Proton Synchrotron Internal Dump 555
 
  • T. Pugnat, L.S. Esposito, M. Giovannozzi, C. Hernalsteens, A. Huschauer, S. Niang
    CERN, Meyrin, Switzerland
  • D. Domange, E. Gnacadja, R. Tesse
    ULB, Bruxelles, Belgium
 
  In the framework of the LHC Injector Upgrade project, a new internal dump for the CERN Proton Synchrotron (PS) has been designed, installed, and successfully commissioned. This device is meant to move rapidly into the beam and stop charged particles over several turns to provide protection to the PS hardware against beam-induced damage. The performance of the dump should ensure efficient use throughout the PS energy range, i.e. from injection at 2 GeV (kinetic energy) to flat top at 26 GeV (total energy). In this paper, detailed numerical simulations are presented, carried out with a combination of sophisticated beam dynamics and beam-matter interaction codes, assessing the behaviour of stopped or scattered particles. The results of these numerical simulations are compared with the data collected during the routine operation of the PS and its internal dump.  
poster icon Poster THBP36 [0.609 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP36  
About • Received ※ 26 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)