Author: Ainsworth, R.
Paper Title Page
WEA2I1 Compensation of Third-order Resonances in the High Intensity Regime 215
 
  • C.E. Gonzalez-Ortiz
    MSU, East Lansing, Michigan, USA
  • R. Ainsworth
    Fermilab, Batavia, Illinois, USA
  • P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
 
  As the Fermilab Accelerator Complex enters the high-intensity era, the Recycler Ring (RR) needs to mitigate the detrimental effect of third-order resonance crossing. Third-order resonance lines can be compensated to first order by cancelling out the global Resonance Driving Terms (RDTs) using the response matrix method. This compensation scheme has been proven to work at low intensities, i.e., in the single-particle regime. In order to evaluate the effectiveness of this compensation scheme at higher intensities, this study looks at dynamic and static tune scans, with and without resonance compensation, and different space charge tune shifts. Special care was taken in order to disentangle effects from space charge tune shift, structure resonances and space charge driven resonances.  
slides icon Slides WEA2I1 [6.714 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA2I1  
About • Received ※ 02 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 09 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP03 Measurement of Stability Diagram at IOTA at Fermilab 400
 
  • M.K. Bossard, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • R. Ainsworth, N. Eddy
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermilab
Nonlinear focusing elements can enhance the stability of particle beams in high-energy colliders by means of Landau Damping, through the tune spread which is introduced. We propose an experiment at Fermilab’s Integrable Optics Test Accelerator (IOTA) to investigate the influence of nonlinear focusing elements on the transverse stability of the beam. In this experiment, we employ an anti-damper, an active transverse feedback system, as a controlled mechanism to induce coherent beam instability. By utilizing the anti-damper, we can examine the impact of the nonlinear focusing element on the beam’s transverse stability. The stability diagram, a tool used to determine the system’s stability, will be measured using a recently demonstrated method at the LHC. This measurement is carried out experimentally by selecting specific threshold gains and measuring them for a range of phases. The stability diagram is represented by gei¿ on the complex plane. The experiment at IOTA adds insight towards the stability diagram measurement method by supplying a reduced machine impedance, to investigate the impedance’s effect on the stability diagram, as well as a larger range of phase measurements.
 
slides icon Slides THAFP03 [1.331 MB]  
poster icon Poster THAFP03 [1.692 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP03  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP04 Investigation of Tail-dominated Instability in the Fermilab Recycler Ring 403
 
  • O. Mohsen, R. Ainsworth, A.V. Burov
    Fermilab, Batavia, Illinois, USA
 
  In our recent operational run, a single bunch, tail-dominated instability was observed in the Fermilab Recycler ring. This instability exclusively occurs in the vertical plane when the chromaticity is close to zero. In this study, we conduct a detailed analysis of this instability under different operational parameters. We investigate the impact of space charge on the head-tail motion and propose potential interpretations of the underlying mechanism of the instability. Moreover, we explore methods to mitigate this instability in the future.  
slides icon Slides THAFP04 [1.429 MB]  
poster icon Poster THAFP04 [0.892 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP04  
About • Received ※ 25 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP30 Linear Modelling and Lattice Correction from Betatron Phase Measurements at the Fermilab Recycler NOvA Ring 534
 
  • M. Xiao, R. Ainsworth, K.J. Hazelwood, M.-J. Yang
    Fermilab, Batavia, Illinois, USA
 
  Utilizing the measurement of coherent betatron oscilla-tion phase has emerged as a fast and precise approach for identifying and rectifying errors in achieving a desired lattice in CESR (Cornell Electron Storage Ring), using TAO analysis program and BMAD subroutines. One key advantage of betatron phase measurement over ¿ meas-urement is its sensitivity to phase variations between detectors. This software package has been successfully implemented for the Recycler Ring at Fermilab, with the adaptation of different hardware installations. By em-ploying this technique, a linear model of the bare Recy-cler ring was established, enabling the correction of quadrupole errors.  
poster icon Poster THBP30 [1.476 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP30  
About • Received ※ 19 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)