JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for THAFP05: A Wireless Method for Beam Coupling Impedance Measurements of the LHC Goniometer

@inproceedings{antuono:hb2023-thafp05,
  author       = {C. Antuono and M. Migliorati and A. Mostacci and C. Zannini},
  title        = {{A Wireless Method for Beam Coupling Impedance Measurements of the LHC Goniometer}},
% booktitle    = {Proc. HB'23},
  booktitle    = {Proc. 68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams (HB'23)},
  eventdate    = {2023-10-09/2023-10-13},
  pages        = {407--410},
  paper        = {THAFP05},
  language     = {english},
  keywords     = {impedance, cavity, coupling, simulation, scattering},
  venue        = {Geneva, Switzerland},
  series       = {ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams},
  number       = {68},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {04},
  year         = {2024},
  issn         = {2673-5571},
  isbn         = {978-3-95450-253-0},
  doi          = {10.18429/JACoW-HB2023-THAFP05},
  url          = {https://jacow.org/hb2023/papers/thafp05.pdf},
  abstract     = {{The beam coupling impedance (BCI) of an accelerator component should be ideally evaluated exciting the device with the beam itself. However, this scenario is not always attainable and alternative methods must be exploited, such as the bench measurements techniques. The stretched Wire Method (WM) is a well established technique for BCI evaluations, although nowadays its limitations are well known. In particular, the stretched wire perturbs the electromagnetic boundary conditions. Therefore, the results obtained could be inaccurate, especially below the cut-off frequency of the beam pipe in the case of cavity-like structures. To overcome these limitations, efforts are being made to investigate alternative bench measurement techniques that will not require the modification of the device under test (DUT). In this framework, a wireless method has been identified and tested for a pillbox cavity. Its potential for more complex structures, such as the LHC crystal goniometer is explored.}},
}